Big Data AI
16.8K subscribers
819 photos
97 videos
19 files
822 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
Forwarded from Machinelearning
🚀Прорыв от Google: активное обучение с экономией данных на 10 000× при дообучении LLM

Google разработала масштабируемый процесс *active learning*, который позволяет в десятки тысяч раз сократить объём размеченных данных, необходимых для тонкой настройки больших языковых моделей на сложных задачах — например, при модерации рекламного контента.

🟢 Как работает метод:
1. Стартовая модель (LLM-0) получает промпт и автоматически размечает огромный массив данных.
2. Кластеризация выявляет примеры, где модель путается (наиболее спорные и ценные для обучения).
3. Отбор данных: из этих кластеров выбирают информативные и разнообразные примеры.
4. Экспертная разметка — только для выбранных примеров.
5. Итерации: дообучение модели → новый отбор спорных примеров → разметка → снова обучение.

🟢Результаты:
- Сокращение с 100 000 размеченных примеров до менее 500 при сохранении или улучшении качества.
- Улучшение метрики *Cohen’s Kappa* на 55–65 %.
- В больших продакшн-моделях — до 3–4 порядков меньше данных при сопоставимом или лучшем качестве.

🟢 Что такое Cohen’s Kappa?
Это метрика, которая показывает, насколько два "судьи" (например, эксперт и модель) согласны между собой с поправкой на случайные совпадения.
- 0.0 — нет согласия (или хуже случайного)
- 0.41–0.60 — умеренное согласие
- 0.61–0.80 — значительное
- 0.81–1.00 — почти полное согласие
В задачах с дисбалансом классов Kappa даёт более честную оценку, чем обычная точность (accuracy).

Чем лучше предыдущих методов:
- Точечная разметка: размечаются только самые информативные примеры.
- Масштабируемость: метод применим к наборам данных с сотнями миллиардов примеров.
- Экономия ресурсов: меньше времени и затрат на разметку.
- Быстрая адаптация: подходит для доменов с быстро меняющимися правилами (реклама, модерация, безопасность).

🟢Вывод:
При умном отборе данных LLM можно адаптировать в тысячи раз быстрее и дешевле, чем при традиционном обучении на больших размеченных наборах.

#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency

🟠Почитать подробно

@ai_machinelearning_big_data


#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥3👍2
🔒 Неожиданный поворот в мире ИИ: Anthropic заблокировала OpenAI доступ к API своего чат-бота Claude, обвинив конкурента в нарушении условий обслуживания. По данным источников Wired, OpenAI использовала Claude для тестирования и сравнения с собственными разработками в преддверии релиза GPT-5 — якобы в обход стандартного интерфейса, через специальные API.

В Anthropic сочли это недопустимым — их условия явно запрещают применение сервиса для создания конкурирующих продуктов. При этом представители компании подчеркивают: сравнительный анализ моделей — обычная практика в индустрии, и доступ для таких целей останется.

OpenAI в ответ заявили, что разочарованы решением, особенно на фоне открытого доступа к их API. Конфликт интересен не только с юридической точки зрения, но и как маркер накаляющейся конкуренции между крупными игроками ИИ. Особенно сейчас, когда все готовятся к новым релизам — GPT-5 от OpenAI и, вероятно, ответных шагов от Anthropic.

🔗 Ссылка - *клик*

@bigdatai
2👍1😢1
Первыми пошли xAI: Макс планирует встроить рекламу прямо в ответы Grok.

Честно говоря, это было лишь вопросом времени.

Проблема ещё и в доверии: в зависимости от того, как это реализуют, люди начнут задумываться — а не подтолкнул ли ИИ к этому ответу рекламодатель? И вот тогда доверие к модели может быстро уйти.
👍52🕊2💯1