چرا UUID7 و ULID گزینههای بهتری برای کلیدهای اصلی در پایگاه داده هستند؟
در طراحی پایگاههای داده، انتخاب نوع شناسه (ID) یکی از تصمیمهای کلیدی است که میتواند تأثیر زیادی بر عملکرد، مقیاسپذیری و امنیت سیستم داشته باشد.
در سناریوهایی مثل سیستمهای توزیعشده، APIهای پرترافیک یا صفحات محصول در وبسایتها که نیاز به درج سریع داده و جلوگیری از افشای الگوی رکوردها وجود دارد، استفاده از کلیدهای auto-increment معمولاً گزینه مناسبی نیست. چون:
⛔️باعث قفل شدن جدول در شرایط همزمانی بالا میشود،
⛔️امکان حدس زدن تعداد یا ترتیب رکوردها را فراهم میکند.
💡 راهحل سنتی چیست؟
استفاده از UUID (نسخه ۴) بهعنوان کلید اصلی مزایای خوبی دارد: یکتایی جهانی بدون نیاز به هماهنگی بین سرورها، مناسب برای محیطهای توزیعشده، و جلوگیری از افشای الگوهای داده. اما یک مشکل جدی دارد.
🔍 چرا UUID تصادفی (مثلاً UUIDv4) در دیتابیسها عملکرد خوبی ندارد؟
اکثر پایگاههای داده رابطهای مانند PostgreSQL، MySQL و SQL Server برای ایندکسگذاری — مخصوصاً روی کلید اصلی — از ساختاری بهنام B-Tree (Balanced Tree) استفاده میکنند.
این ساختار کمک میکند:
✳️جستجوی کلیدها با پیچیدگی O(log n) انجام شود (سریع و مقیاسپذیر)،
✳️دادهها بهصورت مرتب نگه داشته شوند،
✳️ و درج، حذف یا بهروزرسانی بهشکل کارآمد مدیریت شود.
اما مشکل از جایی شروع میشود که کلیدهایی با ترتیب تصادفی (مثل UUIDv4) در جدول وارد میشوند.
📉 چه اتفاقی میافتد؟
وقتی دادههای زیادی با کلید تصادفی وارد جدول میشوند:
⛔️ دیتابیس نمیتواند آنها را در انتهای ساختار درختی اضافه کند (مثل auto-increment IDs)،
⛔️ باید آنها را بین صفحات مختلف B-Tree پراکنده کند،
⛔️ این پراکندگی باعث عملیات مکرر Page Split (شکستن صفحات)، جابهجایی نودها و بازچینش ساختار درختی میشود.
🧨 نتیجه؟
🧱کند شدن محسوس عملیات درج (INSERT)،
🧱 مصرف بالای I/O و حافظه،
🧱 کاهش عملکرد کلی سیستم در سناریوهای پرترافیک.
✅ راهحلهای مدرن: UUID7 و ULID
برای رفع این مشکلات، دو استاندارد جدید معرفی شدهاند:
🔹 استاندارد ULID (Lexicographically sortable): ترکیبی از timestamp و داده تصادفی
🔹 استاندارد UUIDv7: نسخهای از UUID با ترتیب زمانی، سازگار با استاندارد UUID
مزیت اصلی این دو چیست؟
🔸 با حفظ یکتایی و امنیت، کلیدها بهصورت ترتیبی در ایندکس درج میشوند.
🔸 این یعنی:
✅کاهش شدید Page Split و پراکندگی
✅بهبود درجهای پرترافیک
✅جستوجوی سریعتر بر اساس بازههای زمانی
📊 چه زمانی از هرکدام استفاده کنیم؟
اگر خوانایی و طول کوتاهتر مهم است → ULID
اگر سازگاری با UUID استاندارد اهمیت دارد → UUIDv7
📐 قالب ULID
قالب ULID یک رشته ۲۶ نویسهای است که با Crockford’s Base32 کدگذاری میشود (حروف I, L, O, U حذف شدهاند تا اشتباه نشوند).
→ طول: ۲۶ نویسه - کاراکترهای ابتدایی مهرزمان هستند.
→ مثال: 01AN4Z07BY79KA1307SR9X4MV3
📐 قالب UUIDv7
→ نمایش بهصورت استاندارد UUID در مبنای ۱۶ (hex) با خط تیره
→ طول شامل خط تیره: ۳۶ نویسه - کاراکترهای ابتدایی مهرزمان هستند.
→ قالب: 8-4-4-4-12
→ مثال: 017f45e0-7e1a-7a3f-8bbc-4dbf7e6d9c3a
→ طول بدون خط تیره: ۳۲ نویسه hex
#Database #Backend #DistributedSystems #UUID #ULID #PostgreSQL #SystemDesign #Performance #مهندسی_داده
در طراحی پایگاههای داده، انتخاب نوع شناسه (ID) یکی از تصمیمهای کلیدی است که میتواند تأثیر زیادی بر عملکرد، مقیاسپذیری و امنیت سیستم داشته باشد.
در سناریوهایی مثل سیستمهای توزیعشده، APIهای پرترافیک یا صفحات محصول در وبسایتها که نیاز به درج سریع داده و جلوگیری از افشای الگوی رکوردها وجود دارد، استفاده از کلیدهای auto-increment معمولاً گزینه مناسبی نیست. چون:
⛔️باعث قفل شدن جدول در شرایط همزمانی بالا میشود،
⛔️امکان حدس زدن تعداد یا ترتیب رکوردها را فراهم میکند.
💡 راهحل سنتی چیست؟
استفاده از UUID (نسخه ۴) بهعنوان کلید اصلی مزایای خوبی دارد: یکتایی جهانی بدون نیاز به هماهنگی بین سرورها، مناسب برای محیطهای توزیعشده، و جلوگیری از افشای الگوهای داده. اما یک مشکل جدی دارد.
🔍 چرا UUID تصادفی (مثلاً UUIDv4) در دیتابیسها عملکرد خوبی ندارد؟
اکثر پایگاههای داده رابطهای مانند PostgreSQL، MySQL و SQL Server برای ایندکسگذاری — مخصوصاً روی کلید اصلی — از ساختاری بهنام B-Tree (Balanced Tree) استفاده میکنند.
این ساختار کمک میکند:
✳️جستجوی کلیدها با پیچیدگی O(log n) انجام شود (سریع و مقیاسپذیر)،
✳️دادهها بهصورت مرتب نگه داشته شوند،
✳️ و درج، حذف یا بهروزرسانی بهشکل کارآمد مدیریت شود.
اما مشکل از جایی شروع میشود که کلیدهایی با ترتیب تصادفی (مثل UUIDv4) در جدول وارد میشوند.
📉 چه اتفاقی میافتد؟
وقتی دادههای زیادی با کلید تصادفی وارد جدول میشوند:
⛔️ دیتابیس نمیتواند آنها را در انتهای ساختار درختی اضافه کند (مثل auto-increment IDs)،
⛔️ باید آنها را بین صفحات مختلف B-Tree پراکنده کند،
⛔️ این پراکندگی باعث عملیات مکرر Page Split (شکستن صفحات)، جابهجایی نودها و بازچینش ساختار درختی میشود.
🧨 نتیجه؟
🧱کند شدن محسوس عملیات درج (INSERT)،
🧱 مصرف بالای I/O و حافظه،
🧱 کاهش عملکرد کلی سیستم در سناریوهای پرترافیک.
✅ راهحلهای مدرن: UUID7 و ULID
برای رفع این مشکلات، دو استاندارد جدید معرفی شدهاند:
🔹 استاندارد ULID (Lexicographically sortable): ترکیبی از timestamp و داده تصادفی
🔹 استاندارد UUIDv7: نسخهای از UUID با ترتیب زمانی، سازگار با استاندارد UUID
مزیت اصلی این دو چیست؟
🔸 با حفظ یکتایی و امنیت، کلیدها بهصورت ترتیبی در ایندکس درج میشوند.
🔸 این یعنی:
✅کاهش شدید Page Split و پراکندگی
✅بهبود درجهای پرترافیک
✅جستوجوی سریعتر بر اساس بازههای زمانی
📊 چه زمانی از هرکدام استفاده کنیم؟
اگر خوانایی و طول کوتاهتر مهم است → ULID
اگر سازگاری با UUID استاندارد اهمیت دارد → UUIDv7
📐 قالب ULID
قالب ULID یک رشته ۲۶ نویسهای است که با Crockford’s Base32 کدگذاری میشود (حروف I, L, O, U حذف شدهاند تا اشتباه نشوند).
→ طول: ۲۶ نویسه - کاراکترهای ابتدایی مهرزمان هستند.
→ مثال: 01AN4Z07BY79KA1307SR9X4MV3
📐 قالب UUIDv7
→ نمایش بهصورت استاندارد UUID در مبنای ۱۶ (hex) با خط تیره
→ طول شامل خط تیره: ۳۶ نویسه - کاراکترهای ابتدایی مهرزمان هستند.
→ قالب: 8-4-4-4-12
→ مثال: 017f45e0-7e1a-7a3f-8bbc-4dbf7e6d9c3a
→ طول بدون خط تیره: ۳۲ نویسه hex
بنابراین UUID7 طول بیشتری نسبت به ULID دارد اما چون با استاندارد UUID سازگاراست، برای سیستمهای موجود گزینه بهتری است.
#Database #Backend #DistributedSystems #UUID #ULID #PostgreSQL #SystemDesign #Performance #مهندسی_داده
👍8❤1
الگوی Outbox و داستان یک راهکار هوشمندانه در پستگرس
https://dev.to/msdousti/postgresql-outbox-pattern-revamped-part-1-3lai/
🎯 الگوی Outbox چیست؟
در یک فروشگاه آنلاین، ثبت سفارش باید چند کار را انجام دهد:
✅ذخیره در پایگاه داده
✅ارسال ایمیل تأیید
✅بهروزرسانی موجودی
✅اطلاع به واحد ارسال
این اکشنها به بروکرهایی مثل Kafka ارسال میشوند تا هر واحد کار خود را انجام دهد.
❓ اگر ارسال پیام به بروکر با خطا مواجه شود؟
Outbox وارد میشود! سفارش در پایگاه داده ذخیره شده و یک پیام در جدول Outbox ثبت میشود. یک سرویس جداگانه پیامها را خوانده و به بروکر میفرستد. در صورت خطا، پیام در جدول باقی میماند تا دوباره برای پردازش ارسال شود اما ...
🔍 چالش: حجم بالای دادهها
با افزایش پیامها در Outbox:
⚠️کوئریهای خواندن پیامهای منتشرنشده کند میشوند.
⚠️ایندکسها به دلیل آپدیتهای مکرر غیربهینه میشوند.
⚠️مصرف منابع سیستم افزایش مییابد.
💡 راهحل: پارتیشنبندی هوشمند
صادق دوستی پیشنهاد میکند جدول Outbox را به دو پارتیشن تقسیم کنیم:
outbox_unpublished: پیامهای منتشرنشده (published_at IS NULL)
outbox_published: پیامهای منتشرشده (published_at NOT NULL)
با این کار، پیامهای جدید به outbox_unpublished میروند و پس از انتشار، بهصورت خودکار به outbox_published منتقل میشوند. بنابراین کوئریها فقط روی پارتیشن سبکتر اجرا میشوند.
🎉 مزایا:
✅سرعت بالا: کوئریها روی پارتیشن کوچکتر اجرا میشوند.
✅مدیریت آسان: حذف پیامهای قدیمی با TRUNCATE سریع است.
✅بهینهسازی منابع: ایندکسها کوچک و کارآمد میمانند.
🏁 جمعبندی
الگوی Outbox برای هماهنگی سیستمهای توزیعشده عالی است، اما پیادهسازی نادرست آن مشکلساز میشود. پارتیشنبندی هوشمند صادق دوستی این الگو را بهینهتر و سریعتر میکند.
🔗 برای جزئیات بیشتر، حتا مقاله صادق در Dev.to را بخوانید!
#outbox #postgres #performance #database #dataengineering
#مهندسی_داده
اخیراً مقالهای از صادق دوستی در Dev.to خواندم که نشان داد با تجربه و تسلط، میتوان برای چالشهای بزرگ، راهحلهایی هوشمندانه و ساده پیدا کرد. یعنی در دنیای فنی، گاهی غرق پیچیدگیها میشویم و راهحلهای ساده اما عمیق را نادیده میگیریم. این پست ادای دینی است به صادق عزیز Sadeq Dousti و مقالات ارزشمندش، و مروری بر مشکل پیادهسازی الگوی Outbox با PostgreSQL در حجم بالای داده و راهحلی خلاقانه برای آن.
https://dev.to/msdousti/postgresql-outbox-pattern-revamped-part-1-3lai/
🎯 الگوی Outbox چیست؟
در یک فروشگاه آنلاین، ثبت سفارش باید چند کار را انجام دهد:
✅ذخیره در پایگاه داده
✅ارسال ایمیل تأیید
✅بهروزرسانی موجودی
✅اطلاع به واحد ارسال
این اکشنها به بروکرهایی مثل Kafka ارسال میشوند تا هر واحد کار خود را انجام دهد.
❓ اگر ارسال پیام به بروکر با خطا مواجه شود؟
Outbox وارد میشود! سفارش در پایگاه داده ذخیره شده و یک پیام در جدول Outbox ثبت میشود. یک سرویس جداگانه پیامها را خوانده و به بروکر میفرستد. در صورت خطا، پیام در جدول باقی میماند تا دوباره برای پردازش ارسال شود اما ...
🔍 چالش: حجم بالای دادهها
با افزایش پیامها در Outbox:
⚠️کوئریهای خواندن پیامهای منتشرنشده کند میشوند.
⚠️ایندکسها به دلیل آپدیتهای مکرر غیربهینه میشوند.
⚠️مصرف منابع سیستم افزایش مییابد.
💡 راهحل: پارتیشنبندی هوشمند
صادق دوستی پیشنهاد میکند جدول Outbox را به دو پارتیشن تقسیم کنیم:
outbox_unpublished: پیامهای منتشرنشده (published_at IS NULL)
outbox_published: پیامهای منتشرشده (published_at NOT NULL)
با این کار، پیامهای جدید به outbox_unpublished میروند و پس از انتشار، بهصورت خودکار به outbox_published منتقل میشوند. بنابراین کوئریها فقط روی پارتیشن سبکتر اجرا میشوند.
🎉 مزایا:
✅سرعت بالا: کوئریها روی پارتیشن کوچکتر اجرا میشوند.
✅مدیریت آسان: حذف پیامهای قدیمی با TRUNCATE سریع است.
✅بهینهسازی منابع: ایندکسها کوچک و کارآمد میمانند.
🏁 جمعبندی
الگوی Outbox برای هماهنگی سیستمهای توزیعشده عالی است، اما پیادهسازی نادرست آن مشکلساز میشود. پارتیشنبندی هوشمند صادق دوستی این الگو را بهینهتر و سریعتر میکند.
🔗 برای جزئیات بیشتر، حتا مقاله صادق در Dev.to را بخوانید!
#outbox #postgres #performance #database #dataengineering
#مهندسی_داده
👍1