مهندسی داده
792 subscribers
112 photos
7 videos
24 files
314 links
BigData.ir کانال رسمی وب سایت
مطالبی راجع به مهندسی داده و طراحی زیرساخت‌های پردازش دیتا و ابزارهای مدرن دیتا
ارتباط با ادمین: @smbanaei
گروه تخصصی مهندسی داده 👇
https://t.iss.one/bigdata_ir_discussions2
کانال یوتیوب 👇
https://www.youtube.com/@irbigdata
Download Telegram
وقتی پای ۵۰۰هزار سیگنال در ثانیه وسط است ⚡️: انتخاب پایگاه داده برای داده‌های سری زمانی

چند روز پیش یکی از دوستان که روی پروژه‌های #SCADA در صنایع زیرساختی کار می‌کند، سوال جالبی مطرح کرد که باعث شد بشینم و یه بررسی دقیق‌تر انجام بدم و نتیجه را با شما هم به اشتراک بذارم 👇

«ما داده‌های سری زمانی داریم و فعلاً در پایگاه‌داده #Oracle ذخیره می‌شن. ولی در پروژه‌های جدید ممکنه نرخ داده به ۵۰۰ هزار سیگنال در ثانیه برسه. دنبال دیتابیسی هستیم که بتونه این حجم رو مدیریت کنه، تحلیل Real-time بده، و قابلیت‌هایی مثل میانگین‌گیری، Sampling، و Backfill رو پشتیبانی کنه.»


سری زمانی یعنی چی؟ 🕒

داده‌های #TimeSeries معمولاً از سنسورها یا لاگ‌ سیستم‌ها میان و بر اساس زمان مرتب می‌شن. ذخیره و تحلیل این داده‌ها با پایگاه‌داده‌های سنتی خیلی وقتا سخت یا ناکارآمده.

چالش مهم: کاردینالیتی بالا 🧠

در دیتابیس‌های سری زمانی، ستون‌هایی مثل Tag یا Label ممکنه میلیون‌ها مقدار یکتا داشته باشن (High Cardinality). مثلاً هر سنسور یا دستگاه یه شناسه خاص داره. دیتابیس‌هایی مثل #InfluxDB یا #Prometheus در این شرایط دچار مشکل می‌شن، چون ایندکس‌گذاری معکوس (Inverted Index) براشون گرونه.

بررسی گزینه‌های جدی برای ذخیره و تحلیل داده‌های سری زمانی 🧪

دیتابیس TimescaleDB

بر پایه‌ی PostgreSQL، آشنا برای خیلی از تیم‌ها، ولی مقیاس‌پذیری افقی محدود داره.

دیتابیس InfluxDB

معروف‌ترین دیتابیس سری زمانی، ولی در حجم و کاردینالیتی بالا ممکنه کم بیاره.

🔹 زبان اختصاصی Flux، نسخه Cloud و OSS


دیتابیس QuestDB

سریع و سبک، با پشتیبانی از SQL و تحلیل‌های ساده Real-time.

🔹 مناسب پروژه‌های سبک تا متوسط


دیتابیس جدید 🚀 Apache HoraeDB

طراحی شده با زبان Rust برای کار با داده‌های سری زمانی با کاردینالیتی بالا.

از تکنیک scan+prune به جای inverted index استفاده می‌کنه.

🔹 سازگار با سیستم های ابری / Cloud-native و مقیاس‌پذیر

🔹 هنوز incubating ولی بسیار جذاب

🔹 معماری Zero-Disk و جداسازی بخش محاسبات و پردازش از بخش ذخیره سازی


گزینه‌های عمومی ولی قدرتمند برای تحلیل داده در مقیاس بالا 🔍

⚡️ دیتابیس ClickHouse

تحلیل سریع و فوق‌العاده روی داده‌های ستونی. اگر تحلیل پیچیده Real-time می‌خواید، عالیه.

🔹 مقیاس‌پذیر افقی

🔹 پشتیبانی از توابع Aggregation


🌀 دیتابیس ScyllaDB / Cassandra

طراحی‌شده برای نوشتن سریع با تأخیر کم.

اگر مدل داده‌ی خوبی طراحی کنید، خیلی خوب جواب می‌ده.

🔹 دیتابیس ScyllaDB سریع‌تر از Cassandra و با مصرف منابع کمتر


✳️ جمع‌بندی برای شرایط صنعتی با داده‌های حجیم:

اگر با سناریوهایی مثل ۵۰۰k در ثانیه، نیاز به واکشی سریع و تحلیل Real-time سروکار دارید، این سه گزینه بیشترین تطابق رو دارن:

🔹 Apache HoraeDB – طراحی‌شده برای مقیاس بالا + کاردینالیتی بالا

🔹 ClickHouse – برای تحلیل بلادرنگ در مقیاس بزرگ

🔹 ScyllaDB – اگر اولویت با نوشتن با نرخ بالا و توزیع‌پذیریه

🤝 دعوت به گفتگو

آیا تجربه‌ای در انتخاب یا مهاجرت از پایگاه‌داده‌های سنتی به TimeSeries DB داشتید؟

کدوم ابزار براتون بهتر جواب داده؟ چه چالش‌هایی داشتید؟👂 شاید این بحث به انتخاب بهتر برای پروژه‌های بعدی همه ما کمک کنه. نظراتتون را در بخش کامنت‌ این پست می توانید با سایر دوستان به اشتراک بگذارید.

#SCADA #TimeSeriesDatabase #HoraeDB #ClickHouse #ScyllaDB #InfluxDB #QuestDB #DataEngineering #IoT #HighCardinality #RustLang
👍2👏1
عامل‌های هوشمند در مهندسی داده؛ مسیر نوین اتوماسیون و بهینه‌سازی زیرساخت‌ها 🤖

به دنبال راهکاری برای بررسی خودکار متریک‌های Prometheus و ارزیابی دقیق آن‌ها به کمک عامل‌های هوشمند بودم که به سایت

https://mseep.ai

برخوردم — ( تصویر پست از نتیجه یک جستجو در این سایت برداشته شده است).

با کمال تعجب دیدم که تعداد قابل توجهی MCP Server برای ابزارهای مختلف حوزه مهندسی داده در دسترس است و چه پتانسیل بزرگی در این حوزه نهفته است.


🤖 سوال: MCP Server چیست و چرا مهم است؟

سرورهای #MCP امکان اتصال عامل‌های هوشمند به ابزارهای مختلف را فراهم می‌کنند تا بتوان داده‌های لحظه‌ای را در اختیار عامل‌های هوشمند قرار داد و امکان اجرای دستورات مختلف را روی این ابزارها به این عامل هوشمند داد. حالا ما می‌توانیم با این سرورهای واسط، کارهای تکراری و زمان‌بر در حوزه زیرساخت و مهندسی داده را به صورت خودکار و هوشمند انجام دهیم. این فناوری در مهندسی داده می تواند تغییرات بنیادین ایجاد کند.


نسخه آموزشی سریع این فناوری را از این آدرس دانلود کنید :

https://t.iss.one/bigdata_ir/424


🔍 قابلیت‌های کاربردی عامل‌های هوشمند

با بهره‌گیری از این سرورها و عامل‌های هوشمند می‌توانید کارهای زیر را به راحتی اتوماسیون کنید:

پایش و تحلیل مداوم متریک‌های #Prometheus

بررسی و تفسیر خودکار لاگ‌ها و خطاها

تحلیل کوئری‌های کند در #PostgreSQL و بهینه‌سازی ایندکس‌ها

نظارت بر داشبوردهای Grafana و واکنش سریع به شرایط بحرانی

....


⚙️ چطور شروع کنیم؟

📌نصب MCP Server مناسب از منابعی مانند mseep.ai

📌نوشتن پرامپت‌های کاربردی مثل:

🎯«هر یک ساعت کوئری‌های کند را بررسی کن»

🎯«در صورت بروز خطا پیامک یا اطلاع در تلگرام بفرست»

🎯«خودکار عملیات ری‌ایندکس را انجام بده»

📌تعریف زمان‌بندی اجرای اتوماتیک


🚀شروع ساده‌تر با ابزارهای کم‌کد مانند #N8N

ابزارهای کم‌کد و بدون کد مانند #N8N این فرایند را به شدت آسان می‌کنند و امکان استفاده از نودهای هوش مصنوعی را فراهم می‌آورند تا بدون نیاز به برنامه‌نویسی سنگین، اتوماسیون پیشرفته بسازید.


🌟 نگاهی به آینده مهندسی داده

هوش مصنوعی نه تنها در اتوماسیون روتین بلکه در حوزه‌های گسترده‌تری مانند طراحی مدل‌های داده، مستندسازی، رفع خطا و حتی طراحی و اجرای پایپ‌لاین‌های داده نقش مهمی ایفا خواهد کرد. ابزارهایی مثل #Kestra و Bento نمونه‌های موفقی هستند که با توصیف‌های متنی (#YAML) امکان ساخت و اجرای ورک‌فلوهای داده‌ای را به سادگی فراهم می‌کنند.
👍2