معرفی DuckLake: سادهسازی Lakehouse با قدرت SQL
🔍 فرض کنید میخواهیم رفتار کاربران روی یک فروشگاه آنلاین را تحلیل کنیم. آمار کلی مثل نرخ کلیک، نرخ تبدیل و زمان حضور را در پایگاهداده ذخیره میکنیم — اما دادههای ریز و حجیم مثل تکتک کلیکهای کاربران روی محصولات را به صورت خام ذخیره میکنیم، بدون اینکه دیتابیسهای عملیاتی را سنگین کنیم. این دادههای خام به شکلی بهینه ذخیره میشوند که هر زمان نیاز داشتیم بتوانیم روی آنها کوئری اجرا کنیم و تحلیل عمیقتری داشته باشیم.
🧠 این همان فلسفهی #Lakehouse است:
ترکیب بهترین ویژگیهای Data Lake (انعطاف و مقیاسپذیری) و Data #Warehouse (ساختارمندی و قابلیت تحلیل)
اما واقعیت این است که #Lakehouse ها در عمل با پیچیدگیهایی همراه هستند:
برای هر جدول، باید اطلاعاتی مانند schema، نسخهها، تغییرات، پارتیشنبندی و ... در فرادادهها نگه داشته شود. این یعنی نیاز به سیستمهای اضافی کاتالوگها، متادیتاها و گاهی سرویسهای اضافی برای مدیریت نسخهها
📢 امروز #DuckDB با معرفی #DuckLake، پاسخی جسورانه و منطقی به این سوال داده است.
✅ اما سوال اصلی : DuckLake چیست؟
استاندارد DuckLake یک فرمت Open Table جدید برای معماری Lakehouse است که:
دادهها را در قالبهای باز مانند Parquet در Blob Storage ذخیره میکند؛
اما تمام فرادادهها (metadata)، snapshotها، schemaها و آمار را در یک پایگاه داده SQL ساده (مثل PostgreSQL یا خود DuckDB) مدیریت میکند.
🔍 چرا DuckLake یک تغییر بنیادین است؟
1. سادگی واقعی
برخلاف Iceberg و Delta که برای یک append ساده، باید چندین فایل JSON و Avro ایجاد یا بهروز کرد، در DuckLake همه چیز فقط چند query ساده SQL است.
نیازی به لایهی اضافهی catalog server یا فایلهای اضافی نیست. فقط یک دیتابیس و فایلهای Parquet.
2. مدیریت تراکنشپذیر (ACID) واقعی
تغییرات در جدولها، snapshotها و آمار ستونها در یک تراکنش واحد SQL انجام میشود. این یعنی:
📌atomic commitها؛
📌پشتیبانی از تغییرات پیچیده و multi-table؛
📌 بدون ترس از ناسازگاری فایلها در blob storage.
3. سازگاری، مقیاسپذیری و سرعت
میتوانید DuckLake را با DuckDB روی لپتاپ اجرا کنید یا با PostgreSQL روی کلاود.
برخلاف ساختارهای فایلمحور، پردازشها سریعتر، قابل کششدن و قابل مشاهدهاند.
محدود به هیچ vendor خاصی نیستید؛ جابهجایی آسان است.
🏗 یک نگاه به معماری DuckLake:
📁 دادهها → Parquet روی S3 یا هر blob store
📚 فراداده → SQL Tables روی DuckDB/PostgreSQL/...
🔁 عملیات → فقط SQL transactions ساده با DuckDB
🧠 چرا مهم است؟
در حالی که بسیاری از معماریهای داده در مسیر «Lakehouse» پیچیدگیهای جدیدی اضافه میکنند، DuckLake مسیر را به عقب برمیگرداند و از یک حقیقت ساده دفاع میکند:
وقتی که به هر حال از یک دیتابیس استفاده میکنیم، چرا بقیهی بخشها را هم در همان قالب SQL مدیریت نکنیم؟
📌 نتیجهگیری
استاندارد DuckLake نه فقط یک فرمت جدید، بلکه بازاندیشی دوبارهای است در طراحی Lakehouse — مبتنی بر اصل «سادگی، مقیاسپذیری، سرعت». اگر به دنبال آیندهای پایدارتر، قابل نگهداریتر و بدون vendor lock-in برای lakehouse هستید، DuckLake را جدی بگیرید.
📎 مطالعهی کامل مقاله: https://duckdb.org/2025/05/27/ducklake.html
#DuckDB #DuckLake #DataEngineering #Lakehouse #OpenFormats #SQL #Parquet #PostgreSQL
🔍 فرض کنید میخواهیم رفتار کاربران روی یک فروشگاه آنلاین را تحلیل کنیم. آمار کلی مثل نرخ کلیک، نرخ تبدیل و زمان حضور را در پایگاهداده ذخیره میکنیم — اما دادههای ریز و حجیم مثل تکتک کلیکهای کاربران روی محصولات را به صورت خام ذخیره میکنیم، بدون اینکه دیتابیسهای عملیاتی را سنگین کنیم. این دادههای خام به شکلی بهینه ذخیره میشوند که هر زمان نیاز داشتیم بتوانیم روی آنها کوئری اجرا کنیم و تحلیل عمیقتری داشته باشیم.
🧠 این همان فلسفهی #Lakehouse است:
ترکیب بهترین ویژگیهای Data Lake (انعطاف و مقیاسپذیری) و Data #Warehouse (ساختارمندی و قابلیت تحلیل)
اما واقعیت این است که #Lakehouse ها در عمل با پیچیدگیهایی همراه هستند:
برای هر جدول، باید اطلاعاتی مانند schema، نسخهها، تغییرات، پارتیشنبندی و ... در فرادادهها نگه داشته شود. این یعنی نیاز به سیستمهای اضافی کاتالوگها، متادیتاها و گاهی سرویسهای اضافی برای مدیریت نسخهها
اما : چرا وقتی به هر حال به یک دیتابیس نیاز داریم (برای کاتالوگ)، از ابتدا همه چیز را در SQL مدیریت نکنیم؟
📢 امروز #DuckDB با معرفی #DuckLake، پاسخی جسورانه و منطقی به این سوال داده است.
✅ اما سوال اصلی : DuckLake چیست؟
استاندارد DuckLake یک فرمت Open Table جدید برای معماری Lakehouse است که:
دادهها را در قالبهای باز مانند Parquet در Blob Storage ذخیره میکند؛
اما تمام فرادادهها (metadata)، snapshotها، schemaها و آمار را در یک پایگاه داده SQL ساده (مثل PostgreSQL یا خود DuckDB) مدیریت میکند.
🔍 چرا DuckLake یک تغییر بنیادین است؟
1. سادگی واقعی
برخلاف Iceberg و Delta که برای یک append ساده، باید چندین فایل JSON و Avro ایجاد یا بهروز کرد، در DuckLake همه چیز فقط چند query ساده SQL است.
نیازی به لایهی اضافهی catalog server یا فایلهای اضافی نیست. فقط یک دیتابیس و فایلهای Parquet.
2. مدیریت تراکنشپذیر (ACID) واقعی
تغییرات در جدولها، snapshotها و آمار ستونها در یک تراکنش واحد SQL انجام میشود. این یعنی:
📌atomic commitها؛
📌پشتیبانی از تغییرات پیچیده و multi-table؛
📌 بدون ترس از ناسازگاری فایلها در blob storage.
3. سازگاری، مقیاسپذیری و سرعت
میتوانید DuckLake را با DuckDB روی لپتاپ اجرا کنید یا با PostgreSQL روی کلاود.
برخلاف ساختارهای فایلمحور، پردازشها سریعتر، قابل کششدن و قابل مشاهدهاند.
محدود به هیچ vendor خاصی نیستید؛ جابهجایی آسان است.
🏗 یک نگاه به معماری DuckLake:
📁 دادهها → Parquet روی S3 یا هر blob store
📚 فراداده → SQL Tables روی DuckDB/PostgreSQL/...
🔁 عملیات → فقط SQL transactions ساده با DuckDB
🧠 چرا مهم است؟
در حالی که بسیاری از معماریهای داده در مسیر «Lakehouse» پیچیدگیهای جدیدی اضافه میکنند، DuckLake مسیر را به عقب برمیگرداند و از یک حقیقت ساده دفاع میکند:
وقتی که به هر حال از یک دیتابیس استفاده میکنیم، چرا بقیهی بخشها را هم در همان قالب SQL مدیریت نکنیم؟
📌 نتیجهگیری
استاندارد DuckLake نه فقط یک فرمت جدید، بلکه بازاندیشی دوبارهای است در طراحی Lakehouse — مبتنی بر اصل «سادگی، مقیاسپذیری، سرعت». اگر به دنبال آیندهای پایدارتر، قابل نگهداریتر و بدون vendor lock-in برای lakehouse هستید، DuckLake را جدی بگیرید.
📎 مطالعهی کامل مقاله: https://duckdb.org/2025/05/27/ducklake.html
#DuckDB #DuckLake #DataEngineering #Lakehouse #OpenFormats #SQL #Parquet #PostgreSQL
❤4👍1👌1