فرمتهای ستونی نوین Lance: راهحلی برای دنیای متنباز هوش مصنوعی
در دنیای دادههای بزرگ ، یکی از گرایشهای پرطرفدار اخیر، ایجاد زیرساختهای ذخیره و پردازش داده به صورت متنباز و بدون وابستگی به دیتابیسهای خاص است. این رویکرد با ذخیره دادهها در قالب فایلهای خام مانند #Parquet و ساختاردهی به این فایلها با استفاده از تکنولوژیهایی مثل #ApacheIceberg ، به سرعت در حال گسترش است. مفهوم #LakeHouse و پشتیبانی دیتابیسهای تحلیلی از این ایده در محصولات تجاری 📊، نشان از پذیرش این روش دارد.
با این حال، باید توجه داشت که فرمت پارکت به طور ویژه برای دسترسی Full Scan طراحی شده است و از پیشرفتهای اخیر دیسکهای جدید بهطور کامل بهره نمیبرد. همچنین برای ورکلودهای هوش مصنوعی 🤖 که نیاز به دسترسی تصادفی دارند، این فرمت چندان بهینه نیست. بنابراین، اگر قصد گسترش این ایده در دنیای هوش مصنوعی را داریم، به نگاه و استانداردهای جدید نیازمندیم.
📄 در مقالهای که اخیراً تیم LanceDB منتشر کرده، فرمت جدیدی به نام Lance معرفی شده که بهطور خاص برای ورکلودهای هوش مصنوعی طراحی شده است. این فرمت در مقایسه با پارکت، عملکرد دسترسی تصادفی را تا ۶۰ برابر سریعتر 🚀 ارائه میدهد و بهویژه برای تحلیلهای پیچیده و ذخیرهسازی دادههای بزرگ، انتخاب مناسبی بهنظر میرسد. خلاصه مقاله را در ادامه با هم مرور میکنیم.
آدرس مقاله : https://arxiv.org/pdf/2504.15247 - آوریل ۲۰۲۵
قالب نوین Lance از LanceDb
فرمت Lance که توسط LanceDB معرفی شده، برای حل مشکلات فرمتهای سنتی مانند Parquet طراحی شده است. ویژگیهای برجسته این فرمت عبارتند از:
✅ ساختار انکودینگ متفاوت: Lance با دو نوع انکودینگ، دسترسی تصادفی را سریعتر ⚡️ و اسکن کامل را بهینهتر 📊 میکند.
این انکودینگها شامل:
🛠 انکودینگ مبتنی بر عرض داده برای دسترسی تصادفی سریعتر 🔍
🛠 انکودینگ ساختاری برای دادههای پیچیده مانند لیستها و بردارها 📚
🛠 بهینهسازی برای NVMe: لنس از پهنای باند NVMe بهطور بهینه استفاده میکند و عملکردی تا ۶۰ برابر بهتر از Parquet در دسترسی تصادفی دارد ⚡️.
✅ تعادل بین دسترسی تصادفی و اسکن کامل: برخلاف Parquet که برای اسکن کامل بهینه شده، Lance تعادلی را برای دسترسی سریع به دادههای خاص و همچنین اسکن کل ستون فراهم میکند .
✅ پشتیبانی از ورکلودهای هوش مصنوعی: Lance بهویژه برای جستجوهای تماممتن 📑، جستجوهای برداری 📍 و آموزش مدلهای یادگیری ماشین بهینهسازی شده است 🤖.
نتایج کلیدی:
✅ عملکرد دسترسی تصادفی: تا ۶۰ برابر سریعتر از Parquet ⚡️.
✅ مصرف RAM: بهطور چشمگیری کاهش یافته که برای دیتاستهای بزرگ 🏋️♂️ مهم است.
✅ مقایسه با NVMe: عملکرد بهینه با استفاده از سختافزار مدرن 💻.
جمعبندی:
فرمت Lance یک راهحل قدرتمند برای ورکلودهای مدرن در حوزه ایجاد ساختارهای ذخیره و بازیابی دادهها با فرمت باز و بدون وابستگی به ابزارها و دیتابیسها، بهویژه در حوزه هوش مصنوعی است 🤖. با بهینهسازی برای دسترسی تصادفی و پشتیبانی از دادههای پیچیده 🔗، Lance میتواند جایگزینی عالی برای Parquet در این حوزه باشد، بهخصوص در کاربردهایی که سرعت و کارایی اهمیت دارند 🚀.
ایده این نوشتار از این پست لینکدین گرفته شده است : https://www.linkedin.com/posts/dipankar-mazumdar_lakehouse-dataengineering-softwareengineering-activity-7326626194622197761-hrHy/
در دنیای دادههای بزرگ ، یکی از گرایشهای پرطرفدار اخیر، ایجاد زیرساختهای ذخیره و پردازش داده به صورت متنباز و بدون وابستگی به دیتابیسهای خاص است. این رویکرد با ذخیره دادهها در قالب فایلهای خام مانند #Parquet و ساختاردهی به این فایلها با استفاده از تکنولوژیهایی مثل #ApacheIceberg ، به سرعت در حال گسترش است. مفهوم #LakeHouse و پشتیبانی دیتابیسهای تحلیلی از این ایده در محصولات تجاری 📊، نشان از پذیرش این روش دارد.
با این حال، باید توجه داشت که فرمت پارکت به طور ویژه برای دسترسی Full Scan طراحی شده است و از پیشرفتهای اخیر دیسکهای جدید بهطور کامل بهره نمیبرد. همچنین برای ورکلودهای هوش مصنوعی 🤖 که نیاز به دسترسی تصادفی دارند، این فرمت چندان بهینه نیست. بنابراین، اگر قصد گسترش این ایده در دنیای هوش مصنوعی را داریم، به نگاه و استانداردهای جدید نیازمندیم.
📄 در مقالهای که اخیراً تیم LanceDB منتشر کرده، فرمت جدیدی به نام Lance معرفی شده که بهطور خاص برای ورکلودهای هوش مصنوعی طراحی شده است. این فرمت در مقایسه با پارکت، عملکرد دسترسی تصادفی را تا ۶۰ برابر سریعتر 🚀 ارائه میدهد و بهویژه برای تحلیلهای پیچیده و ذخیرهسازی دادههای بزرگ، انتخاب مناسبی بهنظر میرسد. خلاصه مقاله را در ادامه با هم مرور میکنیم.
آدرس مقاله : https://arxiv.org/pdf/2504.15247 - آوریل ۲۰۲۵
قالب نوین Lance از LanceDb
فرمت Lance که توسط LanceDB معرفی شده، برای حل مشکلات فرمتهای سنتی مانند Parquet طراحی شده است. ویژگیهای برجسته این فرمت عبارتند از:
✅ ساختار انکودینگ متفاوت: Lance با دو نوع انکودینگ، دسترسی تصادفی را سریعتر ⚡️ و اسکن کامل را بهینهتر 📊 میکند.
این انکودینگها شامل:
🛠 انکودینگ مبتنی بر عرض داده برای دسترسی تصادفی سریعتر 🔍
🛠 انکودینگ ساختاری برای دادههای پیچیده مانند لیستها و بردارها 📚
🛠 بهینهسازی برای NVMe: لنس از پهنای باند NVMe بهطور بهینه استفاده میکند و عملکردی تا ۶۰ برابر بهتر از Parquet در دسترسی تصادفی دارد ⚡️.
✅ تعادل بین دسترسی تصادفی و اسکن کامل: برخلاف Parquet که برای اسکن کامل بهینه شده، Lance تعادلی را برای دسترسی سریع به دادههای خاص و همچنین اسکن کل ستون فراهم میکند .
✅ پشتیبانی از ورکلودهای هوش مصنوعی: Lance بهویژه برای جستجوهای تماممتن 📑، جستجوهای برداری 📍 و آموزش مدلهای یادگیری ماشین بهینهسازی شده است 🤖.
نتایج کلیدی:
✅ عملکرد دسترسی تصادفی: تا ۶۰ برابر سریعتر از Parquet ⚡️.
✅ مصرف RAM: بهطور چشمگیری کاهش یافته که برای دیتاستهای بزرگ 🏋️♂️ مهم است.
✅ مقایسه با NVMe: عملکرد بهینه با استفاده از سختافزار مدرن 💻.
جمعبندی:
فرمت Lance یک راهحل قدرتمند برای ورکلودهای مدرن در حوزه ایجاد ساختارهای ذخیره و بازیابی دادهها با فرمت باز و بدون وابستگی به ابزارها و دیتابیسها، بهویژه در حوزه هوش مصنوعی است 🤖. با بهینهسازی برای دسترسی تصادفی و پشتیبانی از دادههای پیچیده 🔗، Lance میتواند جایگزینی عالی برای Parquet در این حوزه باشد، بهخصوص در کاربردهایی که سرعت و کارایی اهمیت دارند 🚀.
ایده این نوشتار از این پست لینکدین گرفته شده است : https://www.linkedin.com/posts/dipankar-mazumdar_lakehouse-dataengineering-softwareengineering-activity-7326626194622197761-hrHy/
👍3
از استانداردسازی تا سادهسازی: آیندهی Iceberg در مهندسی داده
🔍تحلیلی بر دو تحول مهم: DuckLake و مقاله جدید MinIO
احتمالاً توی یک سال گذشته، بارها چشمتون به مقالات، ابزارها، یا گفتگوهایی افتاده که حولوحوش موضوعی به اسم #Iceberg میچرخن — یه استاندارد باز و ساختیافته برای ذخیره دادهها بهصورت خام، اما با قابلیتهایی شبیه پایگاه داده:
📌امکان اجرای کوئریهای تحلیلی مستقیم روی فایلهای Parquet
📌پشتیبانی از schema evolution و تراکنشهای ACID
📌و جداسازی کامل ذخیرهسازی از موتور پردازش
و البته این موضوع فقط جهانی نیست — همین چند هفته پیش، در یکی از جلسات مشاوره که با یکی از شرکتهای بزرگ فولادی کشور بود، موضوع جلسه بررسی بهترین راه برای طراحی، راهاندازی، و مدیریت یک Lakehouse مبتنی بر Iceberg بود. کاری که تیم فنی این شرکت، نسخه اولیه آنرا راه اندازی کرده بود. 🚀
🔄 اما دو اتفاق باعث شد که احساس کنم : آیندهی Iceberg بسیار سادهتر و سبکتر خواهد بود.
🌟 اولی معرفی DuckLake بود - https://ducklake.select.
در دنیایی که پر بود از سرویسهای کاتالوگ مختلف (Hive Metastore، Glue، Project Nessie، JDBC Metastore و...)، #DuckLake اومد و گفت:
«همهی اینا رو بذارید کنار! من با یه دیتابیس SQL ساده، همه کارهای مدیریت متادیتا و فایلهای داده رو انجام میدم.»
📦 دادهها همون Parquet هستن روی object storage، اما متادیتا داخل یه دیتابیس ساده مثل #DuckDB یا #Postgres ذخیره میشن. همه چیز از طریق #SQL مدیریت میشه. بدون نیاز به سرویسهای جانبی، بدون پیچیدگی. دقیقاً شبیه #SQLite برای دیتالیکها.
🔥 و استقبال خوبی هم ازش شده. چون سادهتر از Iceberg معمولی راه میافته و سربار کمتری داره.
🧠 دومین اتفاق، مقالهای بود که همین چند روز پیش از طرف MinIO منتشر شد.
https://blog.min.io/the-case-for-native-iceberg-catalog-apis-and-unified-governance-in-object-storage
این مقاله به یه نقطهضعف مهم در معماریهای فعلی دیتالیک اشاره میکرد:
«متادیتا و دسترسی به فایلهای واقعی داده، در دو سیستم جداگانه کنترل میشن. همین باعث میشه امنیت و حاکمیت داده ناقص باقی بمونه.»
یعنی ممکنه کاربر به جدول Iceberg مجوز نداشته باشه، ولی هنوز بتونه مستقیم فایلهای #Parquet رو از #S3 یا #MinIO بخونه! 😬
استوریج MinIO پیشنهاد داده که APIهای Iceberg Catalog بهصورت بومی در خود پلتفرم ذخیرهسازی تعبیه بشن، طوری که هم متادیتا و هم دسترسی به فایلها، از یکجا و با یک مدل امنیتی مدیریت بشن. این یعنی سادگی بیشتر، امنیت بهتر، و مدیریت یکپارچهتر.
🔮 پیشبینی من؟
ما داریم به سمتی میریم که: Iceberg دیگه یه «ابزار حرفهای مخصوص متخصصها» نیست — بلکه تبدیل میشه به یک استاندارد ساده، امن، و در دسترس برای همه تیمهای داده
#ApacheIceberg #DuckLake #MinIO #DataLakehouse #MetadataGovernance #ObjectStorage #OpenTableFormats #SQL #دیتالیک #مهندسی_داده #Parquet #BigData
🔍تحلیلی بر دو تحول مهم: DuckLake و مقاله جدید MinIO
احتمالاً توی یک سال گذشته، بارها چشمتون به مقالات، ابزارها، یا گفتگوهایی افتاده که حولوحوش موضوعی به اسم #Iceberg میچرخن — یه استاندارد باز و ساختیافته برای ذخیره دادهها بهصورت خام، اما با قابلیتهایی شبیه پایگاه داده:
📌امکان اجرای کوئریهای تحلیلی مستقیم روی فایلهای Parquet
📌پشتیبانی از schema evolution و تراکنشهای ACID
📌و جداسازی کامل ذخیرهسازی از موتور پردازش
🧊 بهجرات میشه گفت که #Iceberg یکی از ترندهای داغ این روزهای مهندسی دادهست — از Google BigQuery گرفته تا AWS S3، از Dremio تا Snowflake و پروژه Polaris، همگی در حال پشتیبانی مستقیم یا بومی از Iceberg هستن.
و البته این موضوع فقط جهانی نیست — همین چند هفته پیش، در یکی از جلسات مشاوره که با یکی از شرکتهای بزرگ فولادی کشور بود، موضوع جلسه بررسی بهترین راه برای طراحی، راهاندازی، و مدیریت یک Lakehouse مبتنی بر Iceberg بود. کاری که تیم فنی این شرکت، نسخه اولیه آنرا راه اندازی کرده بود. 🚀
🔄 اما دو اتفاق باعث شد که احساس کنم : آیندهی Iceberg بسیار سادهتر و سبکتر خواهد بود.
🌟 اولی معرفی DuckLake بود - https://ducklake.select.
در دنیایی که پر بود از سرویسهای کاتالوگ مختلف (Hive Metastore، Glue، Project Nessie، JDBC Metastore و...)، #DuckLake اومد و گفت:
«همهی اینا رو بذارید کنار! من با یه دیتابیس SQL ساده، همه کارهای مدیریت متادیتا و فایلهای داده رو انجام میدم.»
📦 دادهها همون Parquet هستن روی object storage، اما متادیتا داخل یه دیتابیس ساده مثل #DuckDB یا #Postgres ذخیره میشن. همه چیز از طریق #SQL مدیریت میشه. بدون نیاز به سرویسهای جانبی، بدون پیچیدگی. دقیقاً شبیه #SQLite برای دیتالیکها.
🔥 و استقبال خوبی هم ازش شده. چون سادهتر از Iceberg معمولی راه میافته و سربار کمتری داره.
🧠 دومین اتفاق، مقالهای بود که همین چند روز پیش از طرف MinIO منتشر شد.
https://blog.min.io/the-case-for-native-iceberg-catalog-apis-and-unified-governance-in-object-storage
این مقاله به یه نقطهضعف مهم در معماریهای فعلی دیتالیک اشاره میکرد:
«متادیتا و دسترسی به فایلهای واقعی داده، در دو سیستم جداگانه کنترل میشن. همین باعث میشه امنیت و حاکمیت داده ناقص باقی بمونه.»
یعنی ممکنه کاربر به جدول Iceberg مجوز نداشته باشه، ولی هنوز بتونه مستقیم فایلهای #Parquet رو از #S3 یا #MinIO بخونه! 😬
استوریج MinIO پیشنهاد داده که APIهای Iceberg Catalog بهصورت بومی در خود پلتفرم ذخیرهسازی تعبیه بشن، طوری که هم متادیتا و هم دسترسی به فایلها، از یکجا و با یک مدل امنیتی مدیریت بشن. این یعنی سادگی بیشتر، امنیت بهتر، و مدیریت یکپارچهتر.
🔮 پیشبینی من؟
ما داریم به سمتی میریم که: Iceberg دیگه یه «ابزار حرفهای مخصوص متخصصها» نیست — بلکه تبدیل میشه به یک استاندارد ساده، امن، و در دسترس برای همه تیمهای داده
🌊 بهزودی، ساخت یک دریاچهداده قدرتمند، به اندازه راهاندازی یک دیتابیس ساده خواهد بود. و Iceberg ستون اصلی این تحول باقی میمونه.
#ApacheIceberg #DuckLake #MinIO #DataLakehouse #MetadataGovernance #ObjectStorage #OpenTableFormats #SQL #دیتالیک #مهندسی_داده #Parquet #BigData
DuckLake
DuckLake is an integrated data lake and catalog format
DuckLake delivers advanced data lake features without traditional lakehouse complexity by using Parquet files and your SQL database. It's an open, standalone format from the DuckDB team.
👍3👌2
آغاز به کار رسمی مدرسه مهندسی داده سپهرام
با افتخار اعلام میکنم که وبسایت https://sepahram.ir به عنوان اولین مدرسه کاربردی مهندسی داده در ایران راهاندازی شد. هدف ما ارائه آموزشهای عملی و پروژهمحور در حوزه #مهندسی_داده برای جامعه فارسیزبان است.
🔰 شروع فعالیت مدرسه با برگزاری دوره نوین:
✨ مبانی مهندسی داده ✨
در این دوره، مفاهیم پایه و ابزارهای اصلی مهندسی داده به شکلی کاملاً عملی آموزش داده میشود، شامل:
🗄 پایگاه دادهها و طراحی اولیه با #PostgreSQL
🛠 آشنایی با #Airflow برای مدیریت و زمانبندی جریانهای داده
⚡️ پردازش دادههای عظیم با #ApacheSpark
🔄 پردازش جریانهای داده در #Kafka
📊 آشنایی عملیاتی با #ClickHouse برای تحلیل سریع و بلادرنگ دادهها
🧊 کار با #ApacheIceberg به عنوان نسل جدید فرمتهای جدولی و مدیریت داده در مقیاس بزرگ
🎯 برای تضمین یادگیری گامبهگام و مؤثر:
- هر درس شامل چند آزمون کوتاه و مفهومی است.
- برای دریافت گواهینامه پایان دوره، انجام و تحویل یک پروژه عملی و کاربردی الزامی است. جزئیات این پروژه در صفحه دوره ذکر شده است.
💬 در صورت بروز مشکل در مسیر آموزشی یا هنگام انجام آزمونها، میتوانید از طریق پیامرسانهای تلگرام، واتساپ یا بله با حساب پشتیبانی مدرسه مهندسی داده سپهرام در ارتباط باشید:
📌 شناسه پشتیبانی: @sepahram_ir
🙌 به عنوان موسس و مدرس اصلی این مدرسه، امیدوارم سپهرام گامی مؤثر در جهت توانمندسازی جامعه فارسیزبان در مسیر حرفهای مهندسی داده باشد.
🔗 جزئیات بیشتر و ثبتنام:
https://sepahram.ir/courses/intro-to-data-engineering
کانال رسمی سپهرام :
https://t.iss.one/sepahram_school
با افتخار اعلام میکنم که وبسایت https://sepahram.ir به عنوان اولین مدرسه کاربردی مهندسی داده در ایران راهاندازی شد. هدف ما ارائه آموزشهای عملی و پروژهمحور در حوزه #مهندسی_داده برای جامعه فارسیزبان است.
🔰 شروع فعالیت مدرسه با برگزاری دوره نوین:
✨ مبانی مهندسی داده ✨
در این دوره، مفاهیم پایه و ابزارهای اصلی مهندسی داده به شکلی کاملاً عملی آموزش داده میشود، شامل:
🗄 پایگاه دادهها و طراحی اولیه با #PostgreSQL
🛠 آشنایی با #Airflow برای مدیریت و زمانبندی جریانهای داده
⚡️ پردازش دادههای عظیم با #ApacheSpark
🔄 پردازش جریانهای داده در #Kafka
📊 آشنایی عملیاتی با #ClickHouse برای تحلیل سریع و بلادرنگ دادهها
🧊 کار با #ApacheIceberg به عنوان نسل جدید فرمتهای جدولی و مدیریت داده در مقیاس بزرگ
🎯 برای تضمین یادگیری گامبهگام و مؤثر:
- هر درس شامل چند آزمون کوتاه و مفهومی است.
- برای دریافت گواهینامه پایان دوره، انجام و تحویل یک پروژه عملی و کاربردی الزامی است. جزئیات این پروژه در صفحه دوره ذکر شده است.
💬 در صورت بروز مشکل در مسیر آموزشی یا هنگام انجام آزمونها، میتوانید از طریق پیامرسانهای تلگرام، واتساپ یا بله با حساب پشتیبانی مدرسه مهندسی داده سپهرام در ارتباط باشید:
📌 شناسه پشتیبانی: @sepahram_ir
🙌 به عنوان موسس و مدرس اصلی این مدرسه، امیدوارم سپهرام گامی مؤثر در جهت توانمندسازی جامعه فارسیزبان در مسیر حرفهای مهندسی داده باشد.
🔗 جزئیات بیشتر و ثبتنام:
https://sepahram.ir/courses/intro-to-data-engineering
کانال رسمی سپهرام :
https://t.iss.one/sepahram_school
👍8
لیکهوس در مسیر بلوغ: نگاهی به نسخه جدید #RisingWave و ادغام عمیق آن با #Iceberg
در دنیای امروز که هر سازمان مجموعهای از سرویسها و جریانهای دادهای متنوع دارد، نیاز به بستری متمرکز برای ذخیره و مدیریت «خودِ دادهها» بیش از همیشه احساس میشود: بستری مستقل از ابزارها و موتورهای پردازشی، جایی که دادهها بهصورت خام و ساختیافته نگهداری شوند.
این معماری نهتنها نظم دادهها را تضمین میکند، بلکه بستر ایدهآلی برای توسعه سامانههای هوش مصنوعی و مدلهای یادگیری ماشین فراهم میسازد؛ زیرا دادههای تمیز و استاندارد، پایهی هر سیستم هوشمند هستند.
🚀با این حال، فناوریهایی چون Iceberg هنوز در مدیریت متادیتا، snapshotها و عملیات نگهداری، چالشهایی دارند. در همین نقطه است که نسخهی جدید #RisingWave v2.6 میتواند فرآیند به کارگیری و مدیریت لیکهوس را تسهیل کند ✨
⚡️ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper = ترکیب برنده!
✅ در این نسخه، RisingWave، بهعنوان یک پایگاه داده جریانی سازگار با #PostgreSQL، بهصورت بومی با Iceberg ادغام شده است. دادهها بهصورت لحظهای از #Kafka دریافت، در RisingWave پردازش، و سپس به شکل استاندارد در Lakehouse ذخیره میشوند.
✅این ارتباط از طریق #Lakekeeper برقرار میشود: یک #REST Catalog استاندارد که رابط رسمی میان RisingWave و Iceberg است.
✅ کتابخانه Lakekeeper علاوه بر مدیریت متادیتا و کنترل دسترسیها (با پشتیبانی از #OpenFGA)، امکان راهاندازی و تنظیم #Lakehouse را بهدلخواه شما فراهم میکند؛ مثلاً با استفاده از #MinIO یا هر فایلسیستم دیگر.
✅ سپس RisingWave با تنظیمات شما و در «لیکهوس شما» شروع به درج دادهها میکند.
✅ دادههای غیرجریانی سازمان نیز میتوانند با ابزارهایی مانند #ApacheSpark یا #PyIceberg به این بستر منتقل شوند تا یک Lakehouse کامل شکل گیرد: جایی که RisingWave بخش دادههای جریانی را مدیریت میکند.
این ترکیب، از نظر فنی استاندارد و از نظر معماری، منعطف و آیندهنگر است.
همچنین، عملیات نگهداشت و بهینهسازی دادهها مستقیماً در خود RisingWave انجام میشود، و بار سنگین مدیریت #Lakehouse از دوش تیمهای داده برداشته میشود. 💪
🧠 ویژگیهای کلیدی نسخهی RisingWave ۲.۶
🔰 پشتیبانی از دادههای برداری (Vector) برای جستوجوی شباهت
🔰حالت جدید Copy-on-Write برای snapshotهای تمیزتر در Iceberg
🔰دستور VACUUM FULL برای پاکسازی و فشردهسازی دادهها
🔰سازگاری کامل با #Lakekeeper REST Catalog
🔰تنوع sinkهای جدید برای #Snowflake، #Redshift، #Elasticsearch
🔰حالت Memory-Only برای پردازشهای فوقسریع
🎥 بهزودی ویدیویی منتشر میکنم که در آن ساخت یک #Lakehouse عملی با
#MinIO + #Lakekeeper + #Spark + #Trino + #StarRocks
را گامبهگام بررسی میکنیم. 🚀
به باور من، مسیر آیندهی زیرساختهای داده بهسمتی پیش میرود که #Lakehouse بستر اصلی ذخیره و تحلیل دادهها شود،
و ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper یکی از گزینههای خوب سازمانی برای شروع این مسیر است. 🌟
در دنیای امروز که هر سازمان مجموعهای از سرویسها و جریانهای دادهای متنوع دارد، نیاز به بستری متمرکز برای ذخیره و مدیریت «خودِ دادهها» بیش از همیشه احساس میشود: بستری مستقل از ابزارها و موتورهای پردازشی، جایی که دادهها بهصورت خام و ساختیافته نگهداری شوند.
این معماری نهتنها نظم دادهها را تضمین میکند، بلکه بستر ایدهآلی برای توسعه سامانههای هوش مصنوعی و مدلهای یادگیری ماشین فراهم میسازد؛ زیرا دادههای تمیز و استاندارد، پایهی هر سیستم هوشمند هستند.
📌 اینجا همان جایی است که مفهوم #Lakehouse اهمیت خود را نشان میدهد: ترکیبی از دادههای ساختیافتهی خام به همراه یک استاندارد سازماندهی مانند #ApacheIceberg که باعث میشود دادهها در مقیاس وسیع قابل ذخیرهسازی، مدیریت و تحلیل باشند.
🚀با این حال، فناوریهایی چون Iceberg هنوز در مدیریت متادیتا، snapshotها و عملیات نگهداری، چالشهایی دارند. در همین نقطه است که نسخهی جدید #RisingWave v2.6 میتواند فرآیند به کارگیری و مدیریت لیکهوس را تسهیل کند ✨
⚡️ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper = ترکیب برنده!
✅ در این نسخه، RisingWave، بهعنوان یک پایگاه داده جریانی سازگار با #PostgreSQL، بهصورت بومی با Iceberg ادغام شده است. دادهها بهصورت لحظهای از #Kafka دریافت، در RisingWave پردازش، و سپس به شکل استاندارد در Lakehouse ذخیره میشوند.
✅این ارتباط از طریق #Lakekeeper برقرار میشود: یک #REST Catalog استاندارد که رابط رسمی میان RisingWave و Iceberg است.
✅ کتابخانه Lakekeeper علاوه بر مدیریت متادیتا و کنترل دسترسیها (با پشتیبانی از #OpenFGA)، امکان راهاندازی و تنظیم #Lakehouse را بهدلخواه شما فراهم میکند؛ مثلاً با استفاده از #MinIO یا هر فایلسیستم دیگر.
✅ سپس RisingWave با تنظیمات شما و در «لیکهوس شما» شروع به درج دادهها میکند.
✅ دادههای غیرجریانی سازمان نیز میتوانند با ابزارهایی مانند #ApacheSpark یا #PyIceberg به این بستر منتقل شوند تا یک Lakehouse کامل شکل گیرد: جایی که RisingWave بخش دادههای جریانی را مدیریت میکند.
این ترکیب، از نظر فنی استاندارد و از نظر معماری، منعطف و آیندهنگر است.
همچنین، عملیات نگهداشت و بهینهسازی دادهها مستقیماً در خود RisingWave انجام میشود، و بار سنگین مدیریت #Lakehouse از دوش تیمهای داده برداشته میشود. 💪
🧠 ویژگیهای کلیدی نسخهی RisingWave ۲.۶
🔰 پشتیبانی از دادههای برداری (Vector) برای جستوجوی شباهت
🔰حالت جدید Copy-on-Write برای snapshotهای تمیزتر در Iceberg
🔰دستور VACUUM FULL برای پاکسازی و فشردهسازی دادهها
🔰سازگاری کامل با #Lakekeeper REST Catalog
🔰تنوع sinkهای جدید برای #Snowflake، #Redshift، #Elasticsearch
🔰حالت Memory-Only برای پردازشهای فوقسریع
🎥 بهزودی ویدیویی منتشر میکنم که در آن ساخت یک #Lakehouse عملی با
#MinIO + #Lakekeeper + #Spark + #Trino + #StarRocks
را گامبهگام بررسی میکنیم. 🚀
به باور من، مسیر آیندهی زیرساختهای داده بهسمتی پیش میرود که #Lakehouse بستر اصلی ذخیره و تحلیل دادهها شود،
و ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper یکی از گزینههای خوب سازمانی برای شروع این مسیر است. 🌟
👍3
Forwarded from مدرسه مهندسی داده سپهرام
از Kafka تا Iceberg در کمتر از یک دقیقه؛ تجربه عملی AutoMQ
در مدرسه مهندسی داده سپهرام، همیشه تلاش کردهایم جدیدترین فناوریهای حوزه داده را بهصورت کاربردی و قابل استفاده در پروژههای واقعی ارائه کنیم. در ویدئویی که اخیراً در کانال یوتیوب مدرسه منتشر شده است، بهصورت کاملاً عملی کار با AutoMQ، جایگزین نوآورانه و cloud-first برای #Kafka و همچنین ذخیرهسازی مستقیم دادههای Kafka در Apache Iceberg و کوئریگیری آن با #DuckDB را بررسی کردهایم.
این جلسه بخشی از رویکرد ما برای آموزش معماریهای مدرن داده مانند Lakehouse، Zero-ETL و استریمپردازی ابری است.
در این ویدئو، مباحث زیر بهصورت مرحلهبهمرحله و عملی ارائه شده است:
✔️آشنایی با معماری AutoMQ و تفاوت آن با Kafka سنتی
✔️راهاندازی کامل AutoMQ، MinIO، Iceberg، Schema Registry و DuckDB با Docker Compose
✔️معرفی و تشریح قابلیت AutoMQ Table Topic
✔️ارسال داده Avro از طریق یک Producer پایتونی
✔️ذخیرهسازی خودکار دادهها از Kafka در جداول Iceberg بدون Kafka Connect و بدون Flink/Spark
✔️بررسی قابلیت Zero-ETL در سناریوی واقعی
✔️یکپارچگی Schema Registry و انتقال خودکار اسکیمـا به Iceberg
✔️مشاهده دادههای ذخیرهشده در Iceberg و اجرای کوئریهای تحلیلی با DuckDB
✔️بررسی قابلیت Time Travel، تکامل اسکیمـا (Schema Evolution) و Partitioning
✔️نکات مهم برای استقرار AutoMQ در محیط Production و تنظیمات پیشنهادی
برای مشاهده این آموزش کاربردی میتوانید ویدئو را در کانال یوتیوب مدرسه مشاهده کنید:
🎥 پیوند ویدئو:
https://lnkd.in/d4ZHK4n8
#Kafka #ApacheIceberg #AutoMQ #DataEngineering #DataPipeline #ZeroETL #DuckDB #Lakehouse
در مدرسه مهندسی داده سپهرام، همیشه تلاش کردهایم جدیدترین فناوریهای حوزه داده را بهصورت کاربردی و قابل استفاده در پروژههای واقعی ارائه کنیم. در ویدئویی که اخیراً در کانال یوتیوب مدرسه منتشر شده است، بهصورت کاملاً عملی کار با AutoMQ، جایگزین نوآورانه و cloud-first برای #Kafka و همچنین ذخیرهسازی مستقیم دادههای Kafka در Apache Iceberg و کوئریگیری آن با #DuckDB را بررسی کردهایم.
این جلسه بخشی از رویکرد ما برای آموزش معماریهای مدرن داده مانند Lakehouse، Zero-ETL و استریمپردازی ابری است.
🔰 اما AutoMQ دقیقا چیست ؟
کتابخانه AutoMQ یک کافکای بازنویسی شده است که مستقیماً بر پایه کدهای Kafka توسعه یافته و تنها لایه ذخیرهسازی آن بازطراحی شده است. در این معماری، پیامها به جای ذخیره روی دیسک هر بروکر، در یک فضای ذخیرهسازی خارجی مانند S3 یا MinIO قرار میگیرند. این تغییر مهم باعث میشود بتوان بروکرهای بدون دیسک داشت، مقیاسپذیری را بسیار سادهتر کرد و عملیات نگهداری را کاهش داد. علاوه بر این، AutoMQ در مدیریت خودکار مقیاسپذیری هنگام افزایش حجم داده، عملکردی بهمراتب بهتر از Kafka سنتی ارائه میدهد و همین موضوع آن را به یک گزینه مناسب برای تیمهای دواپس و محیطهای با بار سنگین داده تبدیل کرده است
در این ویدئو، مباحث زیر بهصورت مرحلهبهمرحله و عملی ارائه شده است:
✔️آشنایی با معماری AutoMQ و تفاوت آن با Kafka سنتی
✔️راهاندازی کامل AutoMQ، MinIO، Iceberg، Schema Registry و DuckDB با Docker Compose
✔️معرفی و تشریح قابلیت AutoMQ Table Topic
✔️ارسال داده Avro از طریق یک Producer پایتونی
✔️ذخیرهسازی خودکار دادهها از Kafka در جداول Iceberg بدون Kafka Connect و بدون Flink/Spark
✔️بررسی قابلیت Zero-ETL در سناریوی واقعی
✔️یکپارچگی Schema Registry و انتقال خودکار اسکیمـا به Iceberg
✔️مشاهده دادههای ذخیرهشده در Iceberg و اجرای کوئریهای تحلیلی با DuckDB
✔️بررسی قابلیت Time Travel، تکامل اسکیمـا (Schema Evolution) و Partitioning
✔️نکات مهم برای استقرار AutoMQ در محیط Production و تنظیمات پیشنهادی
برای مشاهده این آموزش کاربردی میتوانید ویدئو را در کانال یوتیوب مدرسه مشاهده کنید:
🎥 پیوند ویدئو:
https://lnkd.in/d4ZHK4n8
#Kafka #ApacheIceberg #AutoMQ #DataEngineering #DataPipeline #ZeroETL #DuckDB #Lakehouse
👍6❤2