Forwarded from مدرسه مهندسی داده سپهرام
از Kafka تا Iceberg در کمتر از یک دقیقه؛ تجربه عملی AutoMQ
در مدرسه مهندسی داده سپهرام، همیشه تلاش کردهایم جدیدترین فناوریهای حوزه داده را بهصورت کاربردی و قابل استفاده در پروژههای واقعی ارائه کنیم. در ویدئویی که اخیراً در کانال یوتیوب مدرسه منتشر شده است، بهصورت کاملاً عملی کار با AutoMQ، جایگزین نوآورانه و cloud-first برای #Kafka و همچنین ذخیرهسازی مستقیم دادههای Kafka در Apache Iceberg و کوئریگیری آن با #DuckDB را بررسی کردهایم.
این جلسه بخشی از رویکرد ما برای آموزش معماریهای مدرن داده مانند Lakehouse، Zero-ETL و استریمپردازی ابری است.
در این ویدئو، مباحث زیر بهصورت مرحلهبهمرحله و عملی ارائه شده است:
✔️آشنایی با معماری AutoMQ و تفاوت آن با Kafka سنتی
✔️راهاندازی کامل AutoMQ، MinIO، Iceberg، Schema Registry و DuckDB با Docker Compose
✔️معرفی و تشریح قابلیت AutoMQ Table Topic
✔️ارسال داده Avro از طریق یک Producer پایتونی
✔️ذخیرهسازی خودکار دادهها از Kafka در جداول Iceberg بدون Kafka Connect و بدون Flink/Spark
✔️بررسی قابلیت Zero-ETL در سناریوی واقعی
✔️یکپارچگی Schema Registry و انتقال خودکار اسکیمـا به Iceberg
✔️مشاهده دادههای ذخیرهشده در Iceberg و اجرای کوئریهای تحلیلی با DuckDB
✔️بررسی قابلیت Time Travel، تکامل اسکیمـا (Schema Evolution) و Partitioning
✔️نکات مهم برای استقرار AutoMQ در محیط Production و تنظیمات پیشنهادی
برای مشاهده این آموزش کاربردی میتوانید ویدئو را در کانال یوتیوب مدرسه مشاهده کنید:
🎥 پیوند ویدئو:
https://lnkd.in/d4ZHK4n8
#Kafka #ApacheIceberg #AutoMQ #DataEngineering #DataPipeline #ZeroETL #DuckDB #Lakehouse
در مدرسه مهندسی داده سپهرام، همیشه تلاش کردهایم جدیدترین فناوریهای حوزه داده را بهصورت کاربردی و قابل استفاده در پروژههای واقعی ارائه کنیم. در ویدئویی که اخیراً در کانال یوتیوب مدرسه منتشر شده است، بهصورت کاملاً عملی کار با AutoMQ، جایگزین نوآورانه و cloud-first برای #Kafka و همچنین ذخیرهسازی مستقیم دادههای Kafka در Apache Iceberg و کوئریگیری آن با #DuckDB را بررسی کردهایم.
این جلسه بخشی از رویکرد ما برای آموزش معماریهای مدرن داده مانند Lakehouse، Zero-ETL و استریمپردازی ابری است.
🔰 اما AutoMQ دقیقا چیست ؟
کتابخانه AutoMQ یک کافکای بازنویسی شده است که مستقیماً بر پایه کدهای Kafka توسعه یافته و تنها لایه ذخیرهسازی آن بازطراحی شده است. در این معماری، پیامها به جای ذخیره روی دیسک هر بروکر، در یک فضای ذخیرهسازی خارجی مانند S3 یا MinIO قرار میگیرند. این تغییر مهم باعث میشود بتوان بروکرهای بدون دیسک داشت، مقیاسپذیری را بسیار سادهتر کرد و عملیات نگهداری را کاهش داد. علاوه بر این، AutoMQ در مدیریت خودکار مقیاسپذیری هنگام افزایش حجم داده، عملکردی بهمراتب بهتر از Kafka سنتی ارائه میدهد و همین موضوع آن را به یک گزینه مناسب برای تیمهای دواپس و محیطهای با بار سنگین داده تبدیل کرده است
در این ویدئو، مباحث زیر بهصورت مرحلهبهمرحله و عملی ارائه شده است:
✔️آشنایی با معماری AutoMQ و تفاوت آن با Kafka سنتی
✔️راهاندازی کامل AutoMQ، MinIO، Iceberg، Schema Registry و DuckDB با Docker Compose
✔️معرفی و تشریح قابلیت AutoMQ Table Topic
✔️ارسال داده Avro از طریق یک Producer پایتونی
✔️ذخیرهسازی خودکار دادهها از Kafka در جداول Iceberg بدون Kafka Connect و بدون Flink/Spark
✔️بررسی قابلیت Zero-ETL در سناریوی واقعی
✔️یکپارچگی Schema Registry و انتقال خودکار اسکیمـا به Iceberg
✔️مشاهده دادههای ذخیرهشده در Iceberg و اجرای کوئریهای تحلیلی با DuckDB
✔️بررسی قابلیت Time Travel، تکامل اسکیمـا (Schema Evolution) و Partitioning
✔️نکات مهم برای استقرار AutoMQ در محیط Production و تنظیمات پیشنهادی
برای مشاهده این آموزش کاربردی میتوانید ویدئو را در کانال یوتیوب مدرسه مشاهده کنید:
🎥 پیوند ویدئو:
https://lnkd.in/d4ZHK4n8
#Kafka #ApacheIceberg #AutoMQ #DataEngineering #DataPipeline #ZeroETL #DuckDB #Lakehouse
👍6❤2