نگاهی به خرید HyperDX توسط کلیکهوس
🔍 Observability
دیگر یک انتخاب نیست، بلکه یک ضرورت است!
امروزه شرکتها بخصوص تیمهای مهندسی داده و دوستان دواپس نیاز مبرمی به یک پلتفرم یکپارچه نظارت (Observability) دارند که لاگها، تریسها، خطاها و متریکها را در یک محیط مجتمع گرد هم بیاورد. اما چیزی که امروزه علاوه بر این نیازمندیها میتواند برای ما جذاب باشد، یک استک جدید و بهینه است که علاوه بر سرعت بالای جستجو و مصرف کم منابع، امکانات پیشرفتهای مثل بازاجرای خطاها (Session Replay) را نیز فراهم کند.
خرید HyperDX توسط ClickHouse دقیقاً در همین راستاست!
با استفاده از قدرت پردازشی ClickHouse در بکاند، حالا میتوان یک پلتفرم نظارت متنباز، سریع و بهینه برای مهندسان داده و دواپس داشت که نهتنها هزینهها را کاهش میدهد، بلکه تجربه توسعهدهندگان را نیز بهبود میبخشد.
https://clickhouse.com/blog/clickhouse-acquires-hyperdx-the-future-of-open-source-observability
#Observability #ClickHouse #HyperDX #DataEngineering
🔍 Observability
دیگر یک انتخاب نیست، بلکه یک ضرورت است!
امروزه شرکتها بخصوص تیمهای مهندسی داده و دوستان دواپس نیاز مبرمی به یک پلتفرم یکپارچه نظارت (Observability) دارند که لاگها، تریسها، خطاها و متریکها را در یک محیط مجتمع گرد هم بیاورد. اما چیزی که امروزه علاوه بر این نیازمندیها میتواند برای ما جذاب باشد، یک استک جدید و بهینه است که علاوه بر سرعت بالای جستجو و مصرف کم منابع، امکانات پیشرفتهای مثل بازاجرای خطاها (Session Replay) را نیز فراهم کند.
خرید HyperDX توسط ClickHouse دقیقاً در همین راستاست!
با استفاده از قدرت پردازشی ClickHouse در بکاند، حالا میتوان یک پلتفرم نظارت متنباز، سریع و بهینه برای مهندسان داده و دواپس داشت که نهتنها هزینهها را کاهش میدهد، بلکه تجربه توسعهدهندگان را نیز بهبود میبخشد.
https://clickhouse.com/blog/clickhouse-acquires-hyperdx-the-future-of-open-source-observability
#Observability #ClickHouse #HyperDX #DataEngineering
ClickHouse
ClickHouse acquires HyperDX: The future of open-source observability
ClickHouse acquires HyperDX to deliver the fastest, most cost-effective open-source observability with session replay, blazing-fast queries, and seamless OpenTelemetry support.
چطور تسلا با ClickHouse یک پلتفرم مشاهدهپذیری در مقیاس نجومی ساخت؟
مشاهدهپذیری در مقیاس کوادریلیون (هزار بیلیارد) با ClickHouse و پروژهای به نام Comet
داستان تغییر زیرساخت observability تسلا از کجا شروع شد ؟
👨💻 مهندس ارشد تسلا Alon Tal، میگوید:
«ما به سیستمی نیاز داشتیم که بتونه دهها میلیون ردیف در ثانیه را ingest کنه، سالها داده رو نگه داره، و همچنان real-time پاسخ بده.»
چرا Prometheus کافی نبود؟
🔸 مقیاسپذیری افقی محدود
🔸 وابستگی به یک سرور واحد (ریسک از دست دادن کل متریکها)
🔸 مشکلات نگهداری بلندمدت و زبان کوئری محدود
✅ راهحل: ساخت یک سیستم جدید به نام Comet
💡 با استفاده از ClickHouse به عنوان هستهی اصلی، تسلا یک پلتفرم metrics محور ساخت که:
📥 دادهها را از طریق OTLP و Kafka ingest میکند
⚙️ با ETLهای سفارشی دادهها را به شکل ساختیافته وارد ClickHouse میکند
🔄 و مهمتر از همه:
کوئریهای PromQL را به SQL معادل در ClickHouse ترجمه میکند بدون اینکه مهندسان متوجه تفاوت شوند!
🧠 یعنی داشبوردهای موجود (Grafana، Alertmanager، و...) بدون تغییر کار میکنند!
💥 مقیاس واقعی؟
یک میلیارد ردیف در ثانیه! به مدت ۱۱ روز پیاپی!
نتیجه؟
🔹 بدون یک خطا
🔹 مصرف ثابت RAM و CPU
🔹 بیش از ۱ کوادریلیون رکورد با موفقیت ingest شده!
📊 سیستم هنوز هم در حال scale شدن برای تیمهای داخلی تسلاست!
✨ چرا ClickHouse؟
🔹 سرعت بیرقیب در پاسخ به کوئریهای پیچیده
🔹 UDFهای اجرایی برای کوئریهای غیر trivial
🔹 پشتیبانی از PromQL و TraceQL
🔹 نگهداری بلندمدت دادهها با حجم بالا
🔹 و مهمتر از همه: قابلیت اطمینان بالا در مقیاس تسلا!
🔭 آیندهی Comet؟
🔧 پشتیبانی از distributed tracing
🌍 احتمال open-source شدن
🎯 گسترش به دیگر واحدهای عملیاتی در تسلا
📎 جمعبندی
تسلا با پروژهی Comet ثابت کرد که observability در مقیاس سیارهای ممکن است—اگر ابزار مناسب انتخاب شود!
✅ حالا واقعا پرومتئوس حذف شد؟
تسلا Prometheus رو بهطور مستقیم حذف نکرد، ولی:
🌟دیگه از خود Prometheus برای ذخیرهسازی و کوئری استفاده نمیکنه.
🌟 بهجاش، پلتفرمی به نام Comet ساخت که خودش میتونه PromQL (زبان کوئری Prometheus) رو اجرا کنه و پشت صحنه با کلیکهوس ارتباط بگیره و خروجی بده بدون اینکه واقعاً Prometheus وجود داشته باشه!
🔗 منبع اصلی:
https://clickhouse.com/blog/how-tesla-built-quadrillion-scale-observability-platform-on-clickhouse
#ClickHouse #Observability #Tesla #PromQL #DataEngineering #Scalability #TimeSeries #Kafka #DevOps #OpenTelemetry #Infrastructure
مشاهدهپذیری در مقیاس کوادریلیون (هزار بیلیارد) با ClickHouse و پروژهای به نام Comet
داستان تغییر زیرساخت observability تسلا از کجا شروع شد ؟
🔧 چند میلیون خودرو متصل، هزاران زیرسیستم توزیعشده، و گیگافکتوریهایی که شبانهروز داده میفرستند. تسلا در چنین مقیاسی نمیتوانست روی Prometheus حساب باز کند...
👨💻 مهندس ارشد تسلا Alon Tal، میگوید:
«ما به سیستمی نیاز داشتیم که بتونه دهها میلیون ردیف در ثانیه را ingest کنه، سالها داده رو نگه داره، و همچنان real-time پاسخ بده.»
چرا Prometheus کافی نبود؟
🔸 مقیاسپذیری افقی محدود
🔸 وابستگی به یک سرور واحد (ریسک از دست دادن کل متریکها)
🔸 مشکلات نگهداری بلندمدت و زبان کوئری محدود
✅ راهحل: ساخت یک سیستم جدید به نام Comet
💡 با استفاده از ClickHouse به عنوان هستهی اصلی، تسلا یک پلتفرم metrics محور ساخت که:
📥 دادهها را از طریق OTLP و Kafka ingest میکند
⚙️ با ETLهای سفارشی دادهها را به شکل ساختیافته وارد ClickHouse میکند
🔄 و مهمتر از همه:
کوئریهای PromQL را به SQL معادل در ClickHouse ترجمه میکند بدون اینکه مهندسان متوجه تفاوت شوند!
🧠 یعنی داشبوردهای موجود (Grafana، Alertmanager، و...) بدون تغییر کار میکنند!
💥 مقیاس واقعی؟
یک میلیارد ردیف در ثانیه! به مدت ۱۱ روز پیاپی!
نتیجه؟
🔹 بدون یک خطا
🔹 مصرف ثابت RAM و CPU
🔹 بیش از ۱ کوادریلیون رکورد با موفقیت ingest شده!
📊 سیستم هنوز هم در حال scale شدن برای تیمهای داخلی تسلاست!
✨ چرا ClickHouse؟
🔹 سرعت بیرقیب در پاسخ به کوئریهای پیچیده
🔹 UDFهای اجرایی برای کوئریهای غیر trivial
🔹 پشتیبانی از PromQL و TraceQL
🔹 نگهداری بلندمدت دادهها با حجم بالا
🔹 و مهمتر از همه: قابلیت اطمینان بالا در مقیاس تسلا!
🔭 آیندهی Comet؟
🔧 پشتیبانی از distributed tracing
🌍 احتمال open-source شدن
🎯 گسترش به دیگر واحدهای عملیاتی در تسلا
📎 جمعبندی
تسلا با پروژهی Comet ثابت کرد که observability در مقیاس سیارهای ممکن است—اگر ابزار مناسب انتخاب شود!
✅ حالا واقعا پرومتئوس حذف شد؟
تسلا Prometheus رو بهطور مستقیم حذف نکرد، ولی:
🌟دیگه از خود Prometheus برای ذخیرهسازی و کوئری استفاده نمیکنه.
🌟 بهجاش، پلتفرمی به نام Comet ساخت که خودش میتونه PromQL (زبان کوئری Prometheus) رو اجرا کنه و پشت صحنه با کلیکهوس ارتباط بگیره و خروجی بده بدون اینکه واقعاً Prometheus وجود داشته باشه!
🔗 منبع اصلی:
https://clickhouse.com/blog/how-tesla-built-quadrillion-scale-observability-platform-on-clickhouse
#ClickHouse #Observability #Tesla #PromQL #DataEngineering #Scalability #TimeSeries #Kafka #DevOps #OpenTelemetry #Infrastructure
ClickHouse
How Tesla built a quadrillion-scale observability platform on ClickHouse
“Data in ClickHouse is better than data anywhere else. No other system lets you slice and dice your data, ask interesting questions, and get answers in an acceptable amount of time. There’s nothing out there that competes with ClickHouse.” Alon Tal, Senio
👍4❤1
معرفی رسمی ClickStack – استک Observability اپنسورس بر پایه ClickHouse
سالها بود که با وجود قدرت بالای ClickHouse در ذخیره و کوئریگیری سریع دادهها، جای یک راهحل Observability واقعی در این اکوسیستم حس میشد.
گرافانا و پلاگینها کموبیش کمک میکردند، اما ساختن یک استک کامل برای ردیابی لاگها، معیارها، تریسها و بازپخش جلسات کاربران، بیشتر شبیه پازلچینی دستی بود. نه کاربرپسند بود، نه قابلاتکا برای محیطهای تولیدی.
اما حالا اوضاع فرق کرده.
با خرید HyperDX در ابتدای سال 2025، کلیکهوس قدم بزرگی در این حوزه برداشت و اخیرا از ClickStack رونمایی کرد:
یک استک کامل، اپنسورس و بسیار سریع برای Observability – ساختهشده بر قلب تپندهی ClickHouse. ❤️🔥
آدرس : https://clickhouse.com/use-cases/observability
📦 مجموعه ابزار ClickStack چیست؟
🔹 یک پلتفرم سبک و قدرتمند برای مانیتورینگ و دیباگ
🔹 سازگار با OpenTelemetry
🔹 شامل رابط کاربری HyperDX، کلکتور سفارشی، و ClickHouse
🔹 آماده برای محیطهای تولیدی، با نصب آسان و تجربهای روان برای تیمها
💡 چرا این اتفاق مهمه؟
تا پیش از این، حتی تیمهایی مثل نتفلیکس که سالها از کلیکهوس برای تحلیل دادههای Observability استفاده میکردند، مجبور بودند ابزارهای اختصاصی خودشون رو بسازند. حالا با ClickStack، همون قدرت و کارایی در اختیار همه هست آن هم به سادگی و سهولت .
✨ ویژگیهای جذاب ClickStack:
✅ جستجوی بسیار سریع در لاگها و تریسها
✅ تجزیهوتحلیل دادههای عظیم بدون نیاز به SQL
✅ مشاهده زندهی لاگها و بازپخش جلسات
✅ پشتیبانی کامل از JSON و schemaهای پویا
✅ همبستگی خودکار بین لاگ، متریک، تریس و سشن
✅ طراحیشده برای کار با دادههای با کاردینالیتی بالا
✅ هشداردهی، تحلیل روند و شناسایی ناهنجاری
🧱 معماری ClickStack
🎯 ClickHouse: قلب پردازش تحلیلی
🎯 OpenTelemetry Collector: جمعآورندهی دادهها با ساختار بهینه
🎯HyperDX UI: رابط کاربری مدرن برای مشاهده و کاوش دادهها
میتونید این اجزا رو مستقل یا بهصورت یکپارچه استفاده کنید. نسخه مبتنی بر مرورگر HyperDX UI هم در دسترسه که میتونه به استقرارهای موجود کلیکهوس متصل بشه – بدون نیاز به زیرساخت اضافه.
📚 طراحی ClickStack بر اساس چند اصل ساده شکل گرفته:
📌نصب سریع و بدون پیچیدگی
📌پشتیبانی از SQL و Lucene-style search برای راحتی توسعهدهندهها
📌دید کامل از سیستم از سشن کاربر تا کوئری دیتابیس
📌سازگاری کامل با اکوسیستم OpenTelemetry
📌و مهمتر از همه: اپنسورس، قابلتوسعه و شفاف
اگر از ClickHouse استفاده میکنید، میتوانید به راحتی به ClickStack مهاجرت کنید و یا حداقل آنرا امتحان کنید.
#ClickStack #ClickHouse #Observability #OpenTelemetry #DevOps #SRE #OpenSource #HyperDX #MonitoringTools #DataEngineering
سالها بود که با وجود قدرت بالای ClickHouse در ذخیره و کوئریگیری سریع دادهها، جای یک راهحل Observability واقعی در این اکوسیستم حس میشد.
گرافانا و پلاگینها کموبیش کمک میکردند، اما ساختن یک استک کامل برای ردیابی لاگها، معیارها، تریسها و بازپخش جلسات کاربران، بیشتر شبیه پازلچینی دستی بود. نه کاربرپسند بود، نه قابلاتکا برای محیطهای تولیدی.
اما حالا اوضاع فرق کرده.
با خرید HyperDX در ابتدای سال 2025، کلیکهوس قدم بزرگی در این حوزه برداشت و اخیرا از ClickStack رونمایی کرد:
یک استک کامل، اپنسورس و بسیار سریع برای Observability – ساختهشده بر قلب تپندهی ClickHouse. ❤️🔥
آدرس : https://clickhouse.com/use-cases/observability
📦 مجموعه ابزار ClickStack چیست؟
🔹 یک پلتفرم سبک و قدرتمند برای مانیتورینگ و دیباگ
🔹 سازگار با OpenTelemetry
🔹 شامل رابط کاربری HyperDX، کلکتور سفارشی، و ClickHouse
🔹 آماده برای محیطهای تولیدی، با نصب آسان و تجربهای روان برای تیمها
💡 چرا این اتفاق مهمه؟
تا پیش از این، حتی تیمهایی مثل نتفلیکس که سالها از کلیکهوس برای تحلیل دادههای Observability استفاده میکردند، مجبور بودند ابزارهای اختصاصی خودشون رو بسازند. حالا با ClickStack، همون قدرت و کارایی در اختیار همه هست آن هم به سادگی و سهولت .
✨ ویژگیهای جذاب ClickStack:
✅ جستجوی بسیار سریع در لاگها و تریسها
✅ تجزیهوتحلیل دادههای عظیم بدون نیاز به SQL
✅ مشاهده زندهی لاگها و بازپخش جلسات
✅ پشتیبانی کامل از JSON و schemaهای پویا
✅ همبستگی خودکار بین لاگ، متریک، تریس و سشن
✅ طراحیشده برای کار با دادههای با کاردینالیتی بالا
✅ هشداردهی، تحلیل روند و شناسایی ناهنجاری
🧱 معماری ClickStack
🎯 ClickHouse: قلب پردازش تحلیلی
🎯 OpenTelemetry Collector: جمعآورندهی دادهها با ساختار بهینه
🎯HyperDX UI: رابط کاربری مدرن برای مشاهده و کاوش دادهها
میتونید این اجزا رو مستقل یا بهصورت یکپارچه استفاده کنید. نسخه مبتنی بر مرورگر HyperDX UI هم در دسترسه که میتونه به استقرارهای موجود کلیکهوس متصل بشه – بدون نیاز به زیرساخت اضافه.
📚 طراحی ClickStack بر اساس چند اصل ساده شکل گرفته:
📌نصب سریع و بدون پیچیدگی
📌پشتیبانی از SQL و Lucene-style search برای راحتی توسعهدهندهها
📌دید کامل از سیستم از سشن کاربر تا کوئری دیتابیس
📌سازگاری کامل با اکوسیستم OpenTelemetry
📌و مهمتر از همه: اپنسورس، قابلتوسعه و شفاف
🎯 برای همهی تیمهایی که دنبال یک راهحل سریع، منعطف و قابلاتکا برای Observability هستند، حالا یک گزینه جامع و بسیار سریع و در عین حال سبک و مقیاس پذیر داریم.
اگر از ClickHouse استفاده میکنید، میتوانید به راحتی به ClickStack مهاجرت کنید و یا حداقل آنرا امتحان کنید.
#ClickStack #ClickHouse #Observability #OpenTelemetry #DevOps #SRE #OpenSource #HyperDX #MonitoringTools #DataEngineering
👍4
Forwarded from عکس نگار
💫 آنچه خوبان همه دارند، تو تنها داری: معرفی OpenObserve
بیش از یک دهه پیش، مسیر من در دنیای مشاهدهپذیری زیرساختها (#Observability) با پشتهی کلاسیک ELK (Elasticsearch, Logstash, Kibana) آغاز شد.
در سالهای بعد، ابزارهایی چون #VictoriaMetrics و #Signoz را نیز تجربه کردم، هر یک با ویژگیهایی ارزشمند در حوزهی متریکها، لاگها و تریسها.
اما در این مسیر، اخیراً با پلتفرمی مواجه شدم که به نظرم میرسد حرف تازهای برای گفتن دارد:
🚀 OpenObserve (O2)
openobserve.ai
در بررسی اولیه، با مجموعهای از قابلیتها و معماری چندلایه و آیندهنگر روبهرو شدم که در عین سادگی و کارایی، عمق فنی قابل توجهی دارد.
اینکه پلتفرم کاملاً با زبان Rust نوشته شده است، تنها یکی از دلایل جذابیت آن است؛ چراکه Rust همزمان سرعت، ایمنی حافظه و بهرهوری بالا را تضمین میکند.
🧩 معماری مدرن و الهامگرفته از نسل جدید سیستمهای داده
پروژه #OpenObserve از Apache Parquet بهعنوان فرمت ذخیرهسازی ستونی و از DataFusion Query Engine برای اجرای مستقیم کوئریها استفاده میکند. (دیتافیوژن مشابه با #duckdb است که با زبان rust توسعه یافته و متعلق به بنیاد آپاچی است)
این طراحی نشاندهندهی حرکت آگاهانه به سمت همان معماریای است که در نسل جدید سیستمهای داده دیده میشود:
> جداسازی کامل لایهی ذخیرهسازی (Storage Layer) از لایهی محاسبات (Compute Layer)
و تعامل از طریق فرمتهای باز، ستونی و بهینه مثل #Parquet.
نتیجهی این معماری چندلایه، سیستمی است که هم بسیار سریع و مقیاسپذیر است، هم از نظر هزینه و نگهداری بهصرفه و ساده باقی میماند.
⚙️ آنچه در بررسی اولیه توجه من را جلب کرد
🔰 امکان Full-Stack Observability برای Logs، Metrics و Traces در یک بستر واحد
🔰 پشتیبانی از Session Replay و Real User Monitoring (RUM) برای تحلیل تجربهی واقعی کاربران
🔰 معماری Stateless با مقیاسپذیری افقی آسان
🔰 قابلیت High Compression (~40×) و هزینهی ذخیرهسازی تا ۱۴۰× کمتر از Elasticsearch
🔰 پشتیبانی از ذخیرهسازی در S3، MinIO، GCS و Azure Blob
🔰 کوئری با SQL، PromQL و VRL
🔰 سیستم Observability Pipelines برای پردازش، پالایش و غنیسازی دادهها در لحظه
🔰 طراحی High Availability و Clustering برای نیازهای سازمانی بزرگ
⚡ عملکرد و مقیاس
در بنچمارک داخلی، OpenObserve توانسته است ۱ پتابایت داده را در کمتر از ۲ ثانیه کوئری بگیرد، عددی که حتی برای سیستمهای تحلیلی مدرن نیز قابل توجه است.
معماری Stateless Node آن امکان گسترش افقی بدون پیچیدگی Replication یا وابستگی داده را فراهم میکند.
🌍 جامعه و مسیر رشد
این پروژهی متنباز اکنون بیش از ۱۶٬۰۰۰ ستاره در GitHub دارد و توسط جامعهای فعال از متخصصان DevOps، SRE و مهندسان داده توسعه مییابد.
مستندات رسمی و نمونههای کاربردی در openobserve.ai/docs در دسترس است.
🧭 دعوت از تیمهای DevOps و SRE
اگر در زمینهی DevOps، SRE، Data Platform یا Observability فعالیت میکنید، پیشنهاد میکنم OpenObserve را از نزدیک بررسی کنید.
ترکیب زبان Rust، طراحی چندلایهی مبتنی بر Parquet و DataFusion، و مجموعهی کامل قابلیتها از Session Replay تا Alerting و Metrics Analysis
آن را به یکی از جامعترین و آیندهنگرترین پلتفرمهای مشاهدهپذیری حال حاضر تبدیل کرده است.
کانال مهندسی داده:
https://t.iss.one/bigdata_ir
بیش از یک دهه پیش، مسیر من در دنیای مشاهدهپذیری زیرساختها (#Observability) با پشتهی کلاسیک ELK (Elasticsearch, Logstash, Kibana) آغاز شد.
در سالهای بعد، ابزارهایی چون #VictoriaMetrics و #Signoz را نیز تجربه کردم، هر یک با ویژگیهایی ارزشمند در حوزهی متریکها، لاگها و تریسها.
اما در این مسیر، اخیراً با پلتفرمی مواجه شدم که به نظرم میرسد حرف تازهای برای گفتن دارد:
🚀 OpenObserve (O2)
openobserve.ai
در بررسی اولیه، با مجموعهای از قابلیتها و معماری چندلایه و آیندهنگر روبهرو شدم که در عین سادگی و کارایی، عمق فنی قابل توجهی دارد.
اینکه پلتفرم کاملاً با زبان Rust نوشته شده است، تنها یکی از دلایل جذابیت آن است؛ چراکه Rust همزمان سرعت، ایمنی حافظه و بهرهوری بالا را تضمین میکند.
🧩 معماری مدرن و الهامگرفته از نسل جدید سیستمهای داده
پروژه #OpenObserve از Apache Parquet بهعنوان فرمت ذخیرهسازی ستونی و از DataFusion Query Engine برای اجرای مستقیم کوئریها استفاده میکند. (دیتافیوژن مشابه با #duckdb است که با زبان rust توسعه یافته و متعلق به بنیاد آپاچی است)
این طراحی نشاندهندهی حرکت آگاهانه به سمت همان معماریای است که در نسل جدید سیستمهای داده دیده میشود:
> جداسازی کامل لایهی ذخیرهسازی (Storage Layer) از لایهی محاسبات (Compute Layer)
و تعامل از طریق فرمتهای باز، ستونی و بهینه مثل #Parquet.
نتیجهی این معماری چندلایه، سیستمی است که هم بسیار سریع و مقیاسپذیر است، هم از نظر هزینه و نگهداری بهصرفه و ساده باقی میماند.
⚙️ آنچه در بررسی اولیه توجه من را جلب کرد
🔰 امکان Full-Stack Observability برای Logs، Metrics و Traces در یک بستر واحد
🔰 پشتیبانی از Session Replay و Real User Monitoring (RUM) برای تحلیل تجربهی واقعی کاربران
🔰 معماری Stateless با مقیاسپذیری افقی آسان
🔰 قابلیت High Compression (~40×) و هزینهی ذخیرهسازی تا ۱۴۰× کمتر از Elasticsearch
🔰 پشتیبانی از ذخیرهسازی در S3، MinIO، GCS و Azure Blob
🔰 کوئری با SQL، PromQL و VRL
🔰 سیستم Observability Pipelines برای پردازش، پالایش و غنیسازی دادهها در لحظه
🔰 طراحی High Availability و Clustering برای نیازهای سازمانی بزرگ
⚡ عملکرد و مقیاس
در بنچمارک داخلی، OpenObserve توانسته است ۱ پتابایت داده را در کمتر از ۲ ثانیه کوئری بگیرد، عددی که حتی برای سیستمهای تحلیلی مدرن نیز قابل توجه است.
معماری Stateless Node آن امکان گسترش افقی بدون پیچیدگی Replication یا وابستگی داده را فراهم میکند.
🌍 جامعه و مسیر رشد
این پروژهی متنباز اکنون بیش از ۱۶٬۰۰۰ ستاره در GitHub دارد و توسط جامعهای فعال از متخصصان DevOps، SRE و مهندسان داده توسعه مییابد.
مستندات رسمی و نمونههای کاربردی در openobserve.ai/docs در دسترس است.
🧭 دعوت از تیمهای DevOps و SRE
اگر در زمینهی DevOps، SRE، Data Platform یا Observability فعالیت میکنید، پیشنهاد میکنم OpenObserve را از نزدیک بررسی کنید.
ترکیب زبان Rust، طراحی چندلایهی مبتنی بر Parquet و DataFusion، و مجموعهی کامل قابلیتها از Session Replay تا Alerting و Metrics Analysis
آن را به یکی از جامعترین و آیندهنگرترین پلتفرمهای مشاهدهپذیری حال حاضر تبدیل کرده است.
کانال مهندسی داده:
https://t.iss.one/bigdata_ir
👍2🙏1