معرفی سایت DataNerd.tech؛ مرجعی برای تحلیل مهارتها و حقوق مشاغل دادهای
سایت DataNerd.tech به عنوان یک مرجع تحلیلی📊، با هدف کمک به متخصصان داده ایجاد شده است تا بتوانند با آگاهی بیشتر، مسیر شغلی خود را انتخاب کنند.
این پلتفرم با جمعآوری روزانه حدود ۶۵۰۰ آگهی شغلی از نتایج جستجوی گوگل و تحلیل آنها از طریق پردازش زبان طبیعی (NLP)، پرطرفدارترین مهارتها و متوسط حقوق هر موقعیت شغلی را ارائه میدهد.
آدرس سایت : https://datanerd.tech
در بخش مربوط به مهندسین داده، مهارتهایی مانند #SQL، #Python، #AWS، #Azure و #Spark جزو پرجستجوترین مهارتها هستند. این دادهها به کاربران کمک میکند تا بدانند چه مهارتهایی در بازار کار بیشتر مورد توجه قرار دارند و بر چه زمینههایی تمرکز بیشتری داشته باشند. همچنین سایت دارای بخشی برای مشاهده روند تغییرات محبوبیت مهارتها در طول زمان است که تصویری دقیقتر از تحولات بازار ارائه میدهد. 📈
بر اساس تحلیلهای ارائهشده در DataNerd.tech، پردرآمدترین مشاغل 💵 به ترتیب شامل مهندس نرمافزار، مهندس یادگیری ماشین و مهندس داده هستند.
از سوی دیگر، گرانترین مهارتهای 💎 بازار عبارتند از #Scala، #Spark، #Snowflake، #Java و #Python که توجه به آنها میتواند در افزایش فرصتهای شغلی و درآمد تأثیر قابل توجهی داشته باشد.
هدف اصلی این سایت، شفافسازی مسیر یادگیری و جلوگیری از هدررفت زمان متخصصان داده در مهارتهای کمارزش است. DataNerd.tech در مسیر خود به سوی ایجاد یک منبع باز از اطلاعات بازار کار، به کاربران کمک میکند تا تصمیمات آگاهانهتر و بهینهتری برای توسعه مهارتهای حرفهای خود بگیرند. 🚀
یک حقیقت تلخ : دنیا امروز به مهارتهای کلاد نیاز بیشتری دارد، اما در ایران، به دلیل محدودیتها، ما بیشتر مجبوریم روی پروژههای اپن سورس که امکان اجرا روی سرورهای خودمان را دارند، کار کنیم.
#مهندسی_داده #تحلیل_داده #علم_داده #بازار_کار_داده #هوش_مصنوعی #Data_Engineering #Data_Science #Data_Analytics #Machine_Learning #Career_Growth
سایت DataNerd.tech به عنوان یک مرجع تحلیلی📊، با هدف کمک به متخصصان داده ایجاد شده است تا بتوانند با آگاهی بیشتر، مسیر شغلی خود را انتخاب کنند.
این پلتفرم با جمعآوری روزانه حدود ۶۵۰۰ آگهی شغلی از نتایج جستجوی گوگل و تحلیل آنها از طریق پردازش زبان طبیعی (NLP)، پرطرفدارترین مهارتها و متوسط حقوق هر موقعیت شغلی را ارائه میدهد.
آدرس سایت : https://datanerd.tech
در بخش مربوط به مهندسین داده، مهارتهایی مانند #SQL، #Python، #AWS، #Azure و #Spark جزو پرجستجوترین مهارتها هستند. این دادهها به کاربران کمک میکند تا بدانند چه مهارتهایی در بازار کار بیشتر مورد توجه قرار دارند و بر چه زمینههایی تمرکز بیشتری داشته باشند. همچنین سایت دارای بخشی برای مشاهده روند تغییرات محبوبیت مهارتها در طول زمان است که تصویری دقیقتر از تحولات بازار ارائه میدهد. 📈
بر اساس تحلیلهای ارائهشده در DataNerd.tech، پردرآمدترین مشاغل 💵 به ترتیب شامل مهندس نرمافزار، مهندس یادگیری ماشین و مهندس داده هستند.
از سوی دیگر، گرانترین مهارتهای 💎 بازار عبارتند از #Scala، #Spark، #Snowflake، #Java و #Python که توجه به آنها میتواند در افزایش فرصتهای شغلی و درآمد تأثیر قابل توجهی داشته باشد.
هدف اصلی این سایت، شفافسازی مسیر یادگیری و جلوگیری از هدررفت زمان متخصصان داده در مهارتهای کمارزش است. DataNerd.tech در مسیر خود به سوی ایجاد یک منبع باز از اطلاعات بازار کار، به کاربران کمک میکند تا تصمیمات آگاهانهتر و بهینهتری برای توسعه مهارتهای حرفهای خود بگیرند. 🚀
یک حقیقت تلخ : دنیا امروز به مهارتهای کلاد نیاز بیشتری دارد، اما در ایران، به دلیل محدودیتها، ما بیشتر مجبوریم روی پروژههای اپن سورس که امکان اجرا روی سرورهای خودمان را دارند، کار کنیم.
#مهندسی_داده #تحلیل_داده #علم_داده #بازار_کار_داده #هوش_مصنوعی #Data_Engineering #Data_Science #Data_Analytics #Machine_Learning #Career_Growth
👍2
پستگرس در عصر هوش مصنوعی: از انتخاب استارتاپها تا تمرکز غولهای فناوری
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
در نیمه اول ۲۰۲۵، #PostgreSQL بار دیگر نشان داد که فقط یک پایگاهداده نیست؛ بلکه قلب تپندهی تحول در زیرساختهای داده و هوش مصنوعی است. خبرهای مهم، سرمایهگذاریهای سنگین، و توسعه سریع اکوسیستمش، گویای یک واقعیت جدید هستند:
🧠 #پستگرس حالا یکی از بازیگران اصلی در عصر AI است.
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
👍6
داستان تولد یک Graph Engine متفاوت: آشنایی با PuppyGraph🐾
تصور کنید دادههای شما در دیتابیسهای کلاسیک رابطهای مثل #PostgreSQL یا در دیتالِیکهایی مثل #Snowflake یا #Iceberg ذخیره شدهاند.
حجم دادهها بالاست، اتصالها پیچیدهاند، و شما بهعنوان مهندس داده میخواهید تحلیلهای ارتباطی اجرا کنید:
مثل کشف مسیرهای غیرمستقیم بین کاربران، تشخیص حلقههای تراکنشی، یا تحلیل وابستگی در جریان داده.
در اکثر ابزارهای سنتی، برای رسیدن به این نوع بینشها باید داده را استخراج کنید، آن را به فرمت گراف تبدیل کرده و در یک گرافدیتابیس جداگانه بارگذاری کنید. این یعنی:
عملیات #ETL سنگین و زمانبر ⏳
نیاز به زیرساخت گراف مستقل ⚙️
مشکلات همگامسازی داده بین دو سیستم 🔄
💡 اینجا PuppyGraph وارد میشود
پاپیگراف یک Graph Query Engine مدرن و سریع است که با یک رویکرد ساده و انقلابی کار میکند:
«بهجای انتقال داده به یک گرافدیتابیس، چرا گراف را همانجا که داده هست اجرا نکنیم؟»
🔍 چه چیزی PuppyGraph را متفاوت میکند؟
✅ بدون ETL: مستقیماً روی منابع دادهای مانند PostgreSQL، MySQL، Snowflake، Delta Lake یا Iceberg کار میکند.
✅ بدون کپی داده: داده در محل خود باقی میماند، PuppyGraph فقط آن را گرافی تفسیر میکند.
✅ اجرای سریع کوئریهای چندهاپی: حتی 10-hop traversal در کمتر از چند ثانیه، روی میلیاردها لبه.
✅ سازگار با زبانهای گراف استاندارد: از Gremlin و Cypher برای کوئری استفاده کنید، درست مثل Neo4j.
✅ معماری مقیاسپذیر و توزیعشده: طراحیشده برای محیطهای تحلیلی مدرن، با تفکیک compute و storage.
🎯 چه کاربردهایی دارد؟
موتور تحلیل گراف PuppyGraph بهویژه برای تحلیلهایی که ماهیت گرافی دارند عالی است، از جمله:
✅ کشف تقلب در تراکنشها یا شبکههای مالی
✅ تحلیل رفتار کاربران و مسیرهای ارتباطی آنها
✅ درک ساختارهای وابستگی در خطوط داده یا سیستمها
✅ تحلیل شبکههای سازمانی، صنعتی یا IoT
✅ ساخت گراف مفهومی از دادههای پراکنده بدون زیرساخت جدید
🧪 تجربه کار با PuppyGraph
راهاندازی آن ساده است: با Docker یا روی Databricks و AWS در کمتر از ۱۰ دقیقه آماده کار میشود.
تنها کاری که باید بکنید تعریف اسکیمای گرافی با چند خط JSON است—و بعد میتوانید همان دادهای را که همیشه با SQL کوئری میکردید، اینبار از منظر گراف ببینید و تحلیل کنید.
🐶 چرا اسمش PuppyGraph است؟
چون مثل یک تولهسگ هوشمند، سریع، چابک و کمتوقع است. خودش را بهراحتی با محیط شما وفق میدهد، سروصدای زیادی ندارد و کاری که باید انجام دهد را بهخوبی انجام میدهد.
📣 اگر تجربهای در گرافتحلیل داشتهاید یا دنبال راهی برای اجرای گراف روی دادههای رابطهای بدون مهاجرت هستید، PuppyGraph قطعاً یکی از گزینههایی است که باید آن را جدی بگیرید.
💼 و اما : وضعیت لایسنس و نسخهها
نسخه رایگان و متنباز PuppyGraph با نام Developer Edition در دسترس است، اما این نسخه تنها از یک نود پشتیبانی میکند و برای محیطهای کوچک و تستی مناسب است.
اگر بخواهید در محیطهای تولیدی حرفهای از آن استفاده کنید—با امکاناتی مثل مقیاسپذیری افقی، مانیتورینگ، چند کاربر و قابلیتهای امنیتی پیشرفته—باید از نسخه Enterprise استفاده کنید که دارای مجوز تجاری و هزینهبر است اما هزینه آن از نگهداری یک دیتابیس گرافی جداگانه و پایپلاینهای ETL لازم برای ورود مداوم داده در آن، بسیار کمتر است.
#GraphAnalytics #DataEngineering #GraphDatabase #PuppyGraph
تصور کنید دادههای شما در دیتابیسهای کلاسیک رابطهای مثل #PostgreSQL یا در دیتالِیکهایی مثل #Snowflake یا #Iceberg ذخیره شدهاند.
حجم دادهها بالاست، اتصالها پیچیدهاند، و شما بهعنوان مهندس داده میخواهید تحلیلهای ارتباطی اجرا کنید:
مثل کشف مسیرهای غیرمستقیم بین کاربران، تشخیص حلقههای تراکنشی، یا تحلیل وابستگی در جریان داده.
در اکثر ابزارهای سنتی، برای رسیدن به این نوع بینشها باید داده را استخراج کنید، آن را به فرمت گراف تبدیل کرده و در یک گرافدیتابیس جداگانه بارگذاری کنید. این یعنی:
عملیات #ETL سنگین و زمانبر ⏳
نیاز به زیرساخت گراف مستقل ⚙️
مشکلات همگامسازی داده بین دو سیستم 🔄
💡 اینجا PuppyGraph وارد میشود
پاپیگراف یک Graph Query Engine مدرن و سریع است که با یک رویکرد ساده و انقلابی کار میکند:
«بهجای انتقال داده به یک گرافدیتابیس، چرا گراف را همانجا که داده هست اجرا نکنیم؟»
🔍 چه چیزی PuppyGraph را متفاوت میکند؟
✅ بدون ETL: مستقیماً روی منابع دادهای مانند PostgreSQL، MySQL، Snowflake، Delta Lake یا Iceberg کار میکند.
✅ بدون کپی داده: داده در محل خود باقی میماند، PuppyGraph فقط آن را گرافی تفسیر میکند.
✅ اجرای سریع کوئریهای چندهاپی: حتی 10-hop traversal در کمتر از چند ثانیه، روی میلیاردها لبه.
✅ سازگار با زبانهای گراف استاندارد: از Gremlin و Cypher برای کوئری استفاده کنید، درست مثل Neo4j.
✅ معماری مقیاسپذیر و توزیعشده: طراحیشده برای محیطهای تحلیلی مدرن، با تفکیک compute و storage.
🎯 چه کاربردهایی دارد؟
موتور تحلیل گراف PuppyGraph بهویژه برای تحلیلهایی که ماهیت گرافی دارند عالی است، از جمله:
✅ کشف تقلب در تراکنشها یا شبکههای مالی
✅ تحلیل رفتار کاربران و مسیرهای ارتباطی آنها
✅ درک ساختارهای وابستگی در خطوط داده یا سیستمها
✅ تحلیل شبکههای سازمانی، صنعتی یا IoT
✅ ساخت گراف مفهومی از دادههای پراکنده بدون زیرساخت جدید
🧪 تجربه کار با PuppyGraph
راهاندازی آن ساده است: با Docker یا روی Databricks و AWS در کمتر از ۱۰ دقیقه آماده کار میشود.
تنها کاری که باید بکنید تعریف اسکیمای گرافی با چند خط JSON است—و بعد میتوانید همان دادهای را که همیشه با SQL کوئری میکردید، اینبار از منظر گراف ببینید و تحلیل کنید.
🐶 چرا اسمش PuppyGraph است؟
چون مثل یک تولهسگ هوشمند، سریع، چابک و کمتوقع است. خودش را بهراحتی با محیط شما وفق میدهد، سروصدای زیادی ندارد و کاری که باید انجام دهد را بهخوبی انجام میدهد.
📣 اگر تجربهای در گرافتحلیل داشتهاید یا دنبال راهی برای اجرای گراف روی دادههای رابطهای بدون مهاجرت هستید، PuppyGraph قطعاً یکی از گزینههایی است که باید آن را جدی بگیرید.
💼 و اما : وضعیت لایسنس و نسخهها
نسخه رایگان و متنباز PuppyGraph با نام Developer Edition در دسترس است، اما این نسخه تنها از یک نود پشتیبانی میکند و برای محیطهای کوچک و تستی مناسب است.
اگر بخواهید در محیطهای تولیدی حرفهای از آن استفاده کنید—با امکاناتی مثل مقیاسپذیری افقی، مانیتورینگ، چند کاربر و قابلیتهای امنیتی پیشرفته—باید از نسخه Enterprise استفاده کنید که دارای مجوز تجاری و هزینهبر است اما هزینه آن از نگهداری یک دیتابیس گرافی جداگانه و پایپلاینهای ETL لازم برای ورود مداوم داده در آن، بسیار کمتر است.
#GraphAnalytics #DataEngineering #GraphDatabase #PuppyGraph
❤3
وقتی شمارش دقیق خیلی گرون میشه: HyperLogLog 🔢
وقتی با دادههای بزرگ سروکار داریم، خیلی وقتها لازم داریم بدانیم:
✅چند کاربر یکتا در سایت بودهاند؟
✅چند IP مختلف به API ما وصل شدهاند؟
✅چند محصول متفاوت در یک بازه دیده شده؟
💡 راه ساده این است که همه شناسهها را نگه داریم و آخرش بشماریم.
اما در دیتابیسهای توزیعشده، این یعنی انفجار حافظه و فشار شدید روی شبکه.
برای همین سراغ ساختارهای دادهی «تقریبی» میرویم که با مصرف کم حافظه، جواب نزدیک به درست بدهند. یکی از معروفترینها: #HyperLogLog.
🎲 مثال با تاس: رخدادهای نادر
فرض کن کسی مدام تاس میریزد. تو نمیدانی چند بار تاس انداخته، فقط نتایج را میبینی.
🔹 اگه فقط یک بار ۶ آمد → عادی است.
🔹 اگه دو بار پشت سر هم ۶ آمد → کمی نادرتر.
🔹 اگه چهار بار پشت سر هم ۶ آمد → خیلی خیلی نادر.
این رخدادهای نادر سرنخ خوبی هستند. وقتی چیزی خیلی نادر دیدی، میتوانی حدس بزنی که احتمالا تعداد دفعات تاس انداختن خیلی زیاد بوده است.
🔑 ارتباط با #HyperLogLog
حالا این ایده را میبریم به دنیای هش:
📌هر آیتم (مثل IP یا UserID) را هش میکنیم → یک رشتهی طولانی صفر و یک.
📌به ابتدای این رشته نگاه میکنیم: چند صفر پشت سر هم آمده؟
📌هرچه صفرهای بیشتری پشت سر هم باشد، اتفاق نادرتر است → پس احتمالاً دادههای یکتای زیادی وارد شدهاند.
📌در نسخهی سادهی الگوریتم، همیشه بیشترین تعداد صفر دیدهشده را نگه میداریم.
مثلاً اگر حداکثر ۶ صفر دیدهایم، میگوییم:
تقریباً 6^2 = 64 آیتم یکتا داشتهایم. (بر اساس فرمولهای آماری)
🚨 ایراد نسخهی ساده
این روش یک اشکال بزرگ دارد:
اگر همان اوّل کار شانسی هشی بیاید با ۲۰ صفر پشت سر هم، الگوریتم میگوید: «اینجا باید حدود یک میلیون آیتم یکتا دیده شده باشد!»
در حالی که شاید فقط ۱۰ آیتم وارد شدهاند.
مثل این است که دفعهی اوّل ۴ تا شش پشت سر هم بیاید و ما فکر کنیم هزار بار تاس ریختهایم!
🪣 راهحل: باکتینگ
برای حل این مشکل، #HyperLogLog واقعی از باکتها استفاده میکند:
🎯چند بیت اول هش → تعیین میکند آیتم در کدام باکت قرار بگیرد.
🎯بقیه بیتها → برای شمردن تعداد صفرهای ابتدای رشته استفاده میشود.
🎯در هر باکت، فقط «بیشترین تعداد صفر» ذخیره میشود.
🎯در پایان، الگوریتم همه باکتها را با هم ترکیب میکند (با میانگین هارمونیک + اصلاح خطا).
به این ترتیب، یک رخداد نادر شانسی نمیتواند کل تخمین را خراب کند.
🏗 کجاها استفاده میشود؟
الگوریتم شمارش #HyperLogLog امروز در خیلی از دیتابیسها و ابزارهای بزرگ بهکار میرود:
🧩ردیس → دستورات PFADD و PFCOUNT برای شمارش یکتاها
🧩بیگکوئری→ پشت APPROX_COUNT_DISTINCT
🧩ترینو/Presto و #ClickHouse → توابع شمارش تقریبی
🧩اسپارک و #Snowflake → در approx_count_distinct
🧩و حتی سیستمهایی مثل Cassandra / ScyllaDB که برای کم کردن بار IO از ساختارهای مشابه استفاده میکنند
✨ خلاصه اینکه:
الگوریتم HyperLogLog بهجای شمردن دقیق، «حدس تقریبی اما پایدار» میزند؛ و همین باعث شده در مقیاس وب و دیتای عظیم، تبدیل به یک ابزار استاندارد شود.
کانال مدرسه مهندسی داده سپهرام: @sepahram_school
وقتی با دادههای بزرگ سروکار داریم، خیلی وقتها لازم داریم بدانیم:
✅چند کاربر یکتا در سایت بودهاند؟
✅چند IP مختلف به API ما وصل شدهاند؟
✅چند محصول متفاوت در یک بازه دیده شده؟
💡 راه ساده این است که همه شناسهها را نگه داریم و آخرش بشماریم.
اما در دیتابیسهای توزیعشده، این یعنی انفجار حافظه و فشار شدید روی شبکه.
برای همین سراغ ساختارهای دادهی «تقریبی» میرویم که با مصرف کم حافظه، جواب نزدیک به درست بدهند. یکی از معروفترینها: #HyperLogLog.
🎲 مثال با تاس: رخدادهای نادر
فرض کن کسی مدام تاس میریزد. تو نمیدانی چند بار تاس انداخته، فقط نتایج را میبینی.
🔹 اگه فقط یک بار ۶ آمد → عادی است.
🔹 اگه دو بار پشت سر هم ۶ آمد → کمی نادرتر.
🔹 اگه چهار بار پشت سر هم ۶ آمد → خیلی خیلی نادر.
این رخدادهای نادر سرنخ خوبی هستند. وقتی چیزی خیلی نادر دیدی، میتوانی حدس بزنی که احتمالا تعداد دفعات تاس انداختن خیلی زیاد بوده است.
🔑 ارتباط با #HyperLogLog
حالا این ایده را میبریم به دنیای هش:
📌هر آیتم (مثل IP یا UserID) را هش میکنیم → یک رشتهی طولانی صفر و یک.
📌به ابتدای این رشته نگاه میکنیم: چند صفر پشت سر هم آمده؟
📌هرچه صفرهای بیشتری پشت سر هم باشد، اتفاق نادرتر است → پس احتمالاً دادههای یکتای زیادی وارد شدهاند.
📌در نسخهی سادهی الگوریتم، همیشه بیشترین تعداد صفر دیدهشده را نگه میداریم.
مثلاً اگر حداکثر ۶ صفر دیدهایم، میگوییم:
تقریباً 6^2 = 64 آیتم یکتا داشتهایم. (بر اساس فرمولهای آماری)
🚨 ایراد نسخهی ساده
این روش یک اشکال بزرگ دارد:
اگر همان اوّل کار شانسی هشی بیاید با ۲۰ صفر پشت سر هم، الگوریتم میگوید: «اینجا باید حدود یک میلیون آیتم یکتا دیده شده باشد!»
در حالی که شاید فقط ۱۰ آیتم وارد شدهاند.
مثل این است که دفعهی اوّل ۴ تا شش پشت سر هم بیاید و ما فکر کنیم هزار بار تاس ریختهایم!
🪣 راهحل: باکتینگ
برای حل این مشکل، #HyperLogLog واقعی از باکتها استفاده میکند:
🎯چند بیت اول هش → تعیین میکند آیتم در کدام باکت قرار بگیرد.
🎯بقیه بیتها → برای شمردن تعداد صفرهای ابتدای رشته استفاده میشود.
🎯در هر باکت، فقط «بیشترین تعداد صفر» ذخیره میشود.
🎯در پایان، الگوریتم همه باکتها را با هم ترکیب میکند (با میانگین هارمونیک + اصلاح خطا).
به این ترتیب، یک رخداد نادر شانسی نمیتواند کل تخمین را خراب کند.
🏗 کجاها استفاده میشود؟
الگوریتم شمارش #HyperLogLog امروز در خیلی از دیتابیسها و ابزارهای بزرگ بهکار میرود:
🧩ردیس → دستورات PFADD و PFCOUNT برای شمارش یکتاها
🧩بیگکوئری→ پشت APPROX_COUNT_DISTINCT
🧩ترینو/Presto و #ClickHouse → توابع شمارش تقریبی
🧩اسپارک و #Snowflake → در approx_count_distinct
🧩و حتی سیستمهایی مثل Cassandra / ScyllaDB که برای کم کردن بار IO از ساختارهای مشابه استفاده میکنند
✨ خلاصه اینکه:
الگوریتم HyperLogLog بهجای شمردن دقیق، «حدس تقریبی اما پایدار» میزند؛ و همین باعث شده در مقیاس وب و دیتای عظیم، تبدیل به یک ابزار استاندارد شود.
کانال مدرسه مهندسی داده سپهرام: @sepahram_school
👌4❤1🔥1
لیکهوس در مسیر بلوغ: نگاهی به نسخه جدید #RisingWave و ادغام عمیق آن با #Iceberg
در دنیای امروز که هر سازمان مجموعهای از سرویسها و جریانهای دادهای متنوع دارد، نیاز به بستری متمرکز برای ذخیره و مدیریت «خودِ دادهها» بیش از همیشه احساس میشود: بستری مستقل از ابزارها و موتورهای پردازشی، جایی که دادهها بهصورت خام و ساختیافته نگهداری شوند.
این معماری نهتنها نظم دادهها را تضمین میکند، بلکه بستر ایدهآلی برای توسعه سامانههای هوش مصنوعی و مدلهای یادگیری ماشین فراهم میسازد؛ زیرا دادههای تمیز و استاندارد، پایهی هر سیستم هوشمند هستند.
🚀با این حال، فناوریهایی چون Iceberg هنوز در مدیریت متادیتا، snapshotها و عملیات نگهداری، چالشهایی دارند. در همین نقطه است که نسخهی جدید #RisingWave v2.6 میتواند فرآیند به کارگیری و مدیریت لیکهوس را تسهیل کند ✨
⚡️ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper = ترکیب برنده!
✅ در این نسخه، RisingWave، بهعنوان یک پایگاه داده جریانی سازگار با #PostgreSQL، بهصورت بومی با Iceberg ادغام شده است. دادهها بهصورت لحظهای از #Kafka دریافت، در RisingWave پردازش، و سپس به شکل استاندارد در Lakehouse ذخیره میشوند.
✅این ارتباط از طریق #Lakekeeper برقرار میشود: یک #REST Catalog استاندارد که رابط رسمی میان RisingWave و Iceberg است.
✅ کتابخانه Lakekeeper علاوه بر مدیریت متادیتا و کنترل دسترسیها (با پشتیبانی از #OpenFGA)، امکان راهاندازی و تنظیم #Lakehouse را بهدلخواه شما فراهم میکند؛ مثلاً با استفاده از #MinIO یا هر فایلسیستم دیگر.
✅ سپس RisingWave با تنظیمات شما و در «لیکهوس شما» شروع به درج دادهها میکند.
✅ دادههای غیرجریانی سازمان نیز میتوانند با ابزارهایی مانند #ApacheSpark یا #PyIceberg به این بستر منتقل شوند تا یک Lakehouse کامل شکل گیرد: جایی که RisingWave بخش دادههای جریانی را مدیریت میکند.
این ترکیب، از نظر فنی استاندارد و از نظر معماری، منعطف و آیندهنگر است.
همچنین، عملیات نگهداشت و بهینهسازی دادهها مستقیماً در خود RisingWave انجام میشود، و بار سنگین مدیریت #Lakehouse از دوش تیمهای داده برداشته میشود. 💪
🧠 ویژگیهای کلیدی نسخهی RisingWave ۲.۶
🔰 پشتیبانی از دادههای برداری (Vector) برای جستوجوی شباهت
🔰حالت جدید Copy-on-Write برای snapshotهای تمیزتر در Iceberg
🔰دستور VACUUM FULL برای پاکسازی و فشردهسازی دادهها
🔰سازگاری کامل با #Lakekeeper REST Catalog
🔰تنوع sinkهای جدید برای #Snowflake، #Redshift، #Elasticsearch
🔰حالت Memory-Only برای پردازشهای فوقسریع
🎥 بهزودی ویدیویی منتشر میکنم که در آن ساخت یک #Lakehouse عملی با
#MinIO + #Lakekeeper + #Spark + #Trino + #StarRocks
را گامبهگام بررسی میکنیم. 🚀
به باور من، مسیر آیندهی زیرساختهای داده بهسمتی پیش میرود که #Lakehouse بستر اصلی ذخیره و تحلیل دادهها شود،
و ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper یکی از گزینههای خوب سازمانی برای شروع این مسیر است. 🌟
در دنیای امروز که هر سازمان مجموعهای از سرویسها و جریانهای دادهای متنوع دارد، نیاز به بستری متمرکز برای ذخیره و مدیریت «خودِ دادهها» بیش از همیشه احساس میشود: بستری مستقل از ابزارها و موتورهای پردازشی، جایی که دادهها بهصورت خام و ساختیافته نگهداری شوند.
این معماری نهتنها نظم دادهها را تضمین میکند، بلکه بستر ایدهآلی برای توسعه سامانههای هوش مصنوعی و مدلهای یادگیری ماشین فراهم میسازد؛ زیرا دادههای تمیز و استاندارد، پایهی هر سیستم هوشمند هستند.
📌 اینجا همان جایی است که مفهوم #Lakehouse اهمیت خود را نشان میدهد: ترکیبی از دادههای ساختیافتهی خام به همراه یک استاندارد سازماندهی مانند #ApacheIceberg که باعث میشود دادهها در مقیاس وسیع قابل ذخیرهسازی، مدیریت و تحلیل باشند.
🚀با این حال، فناوریهایی چون Iceberg هنوز در مدیریت متادیتا، snapshotها و عملیات نگهداری، چالشهایی دارند. در همین نقطه است که نسخهی جدید #RisingWave v2.6 میتواند فرآیند به کارگیری و مدیریت لیکهوس را تسهیل کند ✨
⚡️ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper = ترکیب برنده!
✅ در این نسخه، RisingWave، بهعنوان یک پایگاه داده جریانی سازگار با #PostgreSQL، بهصورت بومی با Iceberg ادغام شده است. دادهها بهصورت لحظهای از #Kafka دریافت، در RisingWave پردازش، و سپس به شکل استاندارد در Lakehouse ذخیره میشوند.
✅این ارتباط از طریق #Lakekeeper برقرار میشود: یک #REST Catalog استاندارد که رابط رسمی میان RisingWave و Iceberg است.
✅ کتابخانه Lakekeeper علاوه بر مدیریت متادیتا و کنترل دسترسیها (با پشتیبانی از #OpenFGA)، امکان راهاندازی و تنظیم #Lakehouse را بهدلخواه شما فراهم میکند؛ مثلاً با استفاده از #MinIO یا هر فایلسیستم دیگر.
✅ سپس RisingWave با تنظیمات شما و در «لیکهوس شما» شروع به درج دادهها میکند.
✅ دادههای غیرجریانی سازمان نیز میتوانند با ابزارهایی مانند #ApacheSpark یا #PyIceberg به این بستر منتقل شوند تا یک Lakehouse کامل شکل گیرد: جایی که RisingWave بخش دادههای جریانی را مدیریت میکند.
این ترکیب، از نظر فنی استاندارد و از نظر معماری، منعطف و آیندهنگر است.
همچنین، عملیات نگهداشت و بهینهسازی دادهها مستقیماً در خود RisingWave انجام میشود، و بار سنگین مدیریت #Lakehouse از دوش تیمهای داده برداشته میشود. 💪
🧠 ویژگیهای کلیدی نسخهی RisingWave ۲.۶
🔰 پشتیبانی از دادههای برداری (Vector) برای جستوجوی شباهت
🔰حالت جدید Copy-on-Write برای snapshotهای تمیزتر در Iceberg
🔰دستور VACUUM FULL برای پاکسازی و فشردهسازی دادهها
🔰سازگاری کامل با #Lakekeeper REST Catalog
🔰تنوع sinkهای جدید برای #Snowflake، #Redshift، #Elasticsearch
🔰حالت Memory-Only برای پردازشهای فوقسریع
🎥 بهزودی ویدیویی منتشر میکنم که در آن ساخت یک #Lakehouse عملی با
#MinIO + #Lakekeeper + #Spark + #Trino + #StarRocks
را گامبهگام بررسی میکنیم. 🚀
به باور من، مسیر آیندهی زیرساختهای داده بهسمتی پیش میرود که #Lakehouse بستر اصلی ذخیره و تحلیل دادهها شود،
و ترکیب #RisingWave + #ApacheIceberg + #Lakekeeper یکی از گزینههای خوب سازمانی برای شروع این مسیر است. 🌟
👍3