آینده مهندسی داده از نگاه نتفلیکس، Airbnb و Databricks 🚀
📌 اوایل خرداد، نتفلیکس در رویداد سالانهی خود یعنی Data Engineering Open Forum 2025، پنلی جذاب با عنوان «آینده مهندسی داده» برگزار کرد که در آن سه متخصص از غولهای فناوری دیدگاههایشان را درباره آینده این حوزه به اشتراک گذاشتند.
🔸 Tikica (مدیر پنل – مهندس ارشد نتفلیکس)
🔸 Ryan Blue (همبنیانگذار Databricks و سازنده Iceberg)
🔸 Jerry (مهندس ارشد Airbnb)
🔸 Ena (مهندس داده در نتفلیکس)
در این پنل، از مسیرهای شغلی تا چالشهای امروز و مهارتهای فردا صحبت شد. خلاصهای از نکات مطرحشده را در ادامه میخوانید:
🎥 ویدئوی ۲۰ دقیقهای این پنل: https://www.youtube.com/watch?v=VVWjdsuNrwE&ab_channel=NetflixEngineering
🔮 ۱. هوشمصنوعی؛ دستیار قدرتمند، نه تهدید
💬 برخلاف تصور رایج، #GenAI شغل مهندس داده را تهدید نمیکند، بلکه ابزار توانمندی برای کمک در کارهای پیچیده و تکراریست:
✅ بازنویسی کوئری و کمک در مهاجرت
✅ بهبود مستندسازی و تسهیل پلتفرم
✅ تمرکز بیشتر بر حل مسائل کسبوکار
✅ ارتقاء کیفیت کد
🔍 اما این تحولات، نیاز به دادهی باکیفیت، مستند و شفاف را دوچندان میکند.
⚠️۲. چالشهای فعلی در #مهندسی_داده
مهندسی داده دیگر فقط ساختن چند جدول و اجرای ETL نیست.
با رشد دادهها، ابزارها و انتظارات، چالشها هم رشد کردهاند:
🚨 بررسی مشکلات کیفی در دادههایی که وارد مدلهای LLM میشوند بسیار سختتر است. برخلاف داشبورد یا A/B تستها، این مدلها شفاف نیستند.
🌐 اتصال بین انبارههای داده آفلاین، آنلاین و اپلیکیشنهای واقعی محصولمحور، باعث شده دیتاپایپلاینها بسیار پیچیدهتر شوند.
🛡 نگرانیهای جدیدی دربارهی حریم خصوصی، لو رفتن اطلاعات حساس و نحوهی کنترل دادههای تولیدشده توسط LLMها شکل گرفته است.
🎥 مهاجرت به دادههای چندرسانهای (متن، تصویر، ویدیو) نیاز به مهارت و ابزارهایی دارد که خیلی از ما هنوز با آنها آشنا نیستیم.
🧠 ۳. مهارتهای کلیدی برای آینده
پنلیستها تاکید کردند که مسیر موفقیت همچنان از «پایههای مهندسی قوی» میگذرد:
📌 مدلسازی دقیق داده
📌 درک ساختارها
📌 تعهد به کیفیت
اما برای آینده، باید مهارتهای زیر را نیز توسعه داد:
🔹 پردازش real-time و event-driven
🔹 آشنایی با جستجوی معنایی و vector DBها
🔹 توانایی پردازش دادههای multimodal
🔹 یادگیری ابزارهای مدرن مانند #DBT، #DuckDB، #PyIceberg و...
🧭 ۴. تشخیص ابزار مفید از ترندهای هیجانی
چطور بین ابزارهای واقعی و ترندهای زودگذر فرق بگذاریم؟
پنل نکات خوبی دربارهی انتخاب تکنولوژی مناسب داشت:
✅ آیا این ابزار واقعاً کار ما را سادهتر میکند؟
✅ فقط نحوهی استفادهاش را بلدم یا میدانم چرا و چطور کار میکند؟
✅ آیا جامعه توسعهدهنده و کامیونیتی فعالی دارد؟
✅ آیا به نیاز واقعی بیزینس پاسخ میدهد؟
📌 جمعبندی:
آیندهی مهندسی داده، ترکیبیست از پایههای محکم فنی و یادگیری هوشمندانهی ابزارهای جدید.
اگر هوشمند انتخاب کنیم و یاد بگیریم، GenAI حامی ماست، نه جایگزین ما.
#مهندسی_داده #GenAI #LLM #DataEngineering #Netflix #Airbnb #Databricks #DataQuality #AItools #OpenSource #TechTrends #آینده_شغلی
📌 اوایل خرداد، نتفلیکس در رویداد سالانهی خود یعنی Data Engineering Open Forum 2025، پنلی جذاب با عنوان «آینده مهندسی داده» برگزار کرد که در آن سه متخصص از غولهای فناوری دیدگاههایشان را درباره آینده این حوزه به اشتراک گذاشتند.
🔸 Tikica (مدیر پنل – مهندس ارشد نتفلیکس)
🔸 Ryan Blue (همبنیانگذار Databricks و سازنده Iceberg)
🔸 Jerry (مهندس ارشد Airbnb)
🔸 Ena (مهندس داده در نتفلیکس)
در این پنل، از مسیرهای شغلی تا چالشهای امروز و مهارتهای فردا صحبت شد. خلاصهای از نکات مطرحشده را در ادامه میخوانید:
🎥 ویدئوی ۲۰ دقیقهای این پنل: https://www.youtube.com/watch?v=VVWjdsuNrwE&ab_channel=NetflixEngineering
🔮 ۱. هوشمصنوعی؛ دستیار قدرتمند، نه تهدید
💬 برخلاف تصور رایج، #GenAI شغل مهندس داده را تهدید نمیکند، بلکه ابزار توانمندی برای کمک در کارهای پیچیده و تکراریست:
✅ بازنویسی کوئری و کمک در مهاجرت
✅ بهبود مستندسازی و تسهیل پلتفرم
✅ تمرکز بیشتر بر حل مسائل کسبوکار
✅ ارتقاء کیفیت کد
🔍 اما این تحولات، نیاز به دادهی باکیفیت، مستند و شفاف را دوچندان میکند.
⚠️۲. چالشهای فعلی در #مهندسی_داده
مهندسی داده دیگر فقط ساختن چند جدول و اجرای ETL نیست.
با رشد دادهها، ابزارها و انتظارات، چالشها هم رشد کردهاند:
🚨 بررسی مشکلات کیفی در دادههایی که وارد مدلهای LLM میشوند بسیار سختتر است. برخلاف داشبورد یا A/B تستها، این مدلها شفاف نیستند.
🌐 اتصال بین انبارههای داده آفلاین، آنلاین و اپلیکیشنهای واقعی محصولمحور، باعث شده دیتاپایپلاینها بسیار پیچیدهتر شوند.
🛡 نگرانیهای جدیدی دربارهی حریم خصوصی، لو رفتن اطلاعات حساس و نحوهی کنترل دادههای تولیدشده توسط LLMها شکل گرفته است.
🎥 مهاجرت به دادههای چندرسانهای (متن، تصویر، ویدیو) نیاز به مهارت و ابزارهایی دارد که خیلی از ما هنوز با آنها آشنا نیستیم.
🧠 ۳. مهارتهای کلیدی برای آینده
پنلیستها تاکید کردند که مسیر موفقیت همچنان از «پایههای مهندسی قوی» میگذرد:
📌 مدلسازی دقیق داده
📌 درک ساختارها
📌 تعهد به کیفیت
اما برای آینده، باید مهارتهای زیر را نیز توسعه داد:
🔹 پردازش real-time و event-driven
🔹 آشنایی با جستجوی معنایی و vector DBها
🔹 توانایی پردازش دادههای multimodal
🔹 یادگیری ابزارهای مدرن مانند #DBT، #DuckDB، #PyIceberg و...
🧭 ۴. تشخیص ابزار مفید از ترندهای هیجانی
چطور بین ابزارهای واقعی و ترندهای زودگذر فرق بگذاریم؟
پنل نکات خوبی دربارهی انتخاب تکنولوژی مناسب داشت:
✅ آیا این ابزار واقعاً کار ما را سادهتر میکند؟
✅ فقط نحوهی استفادهاش را بلدم یا میدانم چرا و چطور کار میکند؟
✅ آیا جامعه توسعهدهنده و کامیونیتی فعالی دارد؟
✅ آیا به نیاز واقعی بیزینس پاسخ میدهد؟
📌 جمعبندی:
آیندهی مهندسی داده، ترکیبیست از پایههای محکم فنی و یادگیری هوشمندانهی ابزارهای جدید.
اگر هوشمند انتخاب کنیم و یاد بگیریم، GenAI حامی ماست، نه جایگزین ما.
#مهندسی_داده #GenAI #LLM #DataEngineering #Netflix #Airbnb #Databricks #DataQuality #AItools #OpenSource #TechTrends #آینده_شغلی
👍5❤2
شروعی حرفهای برای ورود به دنیای مهندسی داده – رایگان و بینالمللی🎓
در دنیای امروز، یادگیری مهارتهای عملی و نزدیک به پروژههای واقعی، مهمترین مزیت رقابتی برای ورود به بازار کار حوزه داده است.
اگر شما هم به دنبال فرصتی برای یادگیری ساختیافته، کاربردی، و تحت نظر یک تیم متخصص بینالمللی هستید، این بوتکمپ رایگان مهندسی داده یک فرصت بینظیر است.
👨🏫 برگزارکننده: Zach Wilson
مؤسس DataExpert.io و از شناختهشدهترین چهرههای حوزه داده با بیش از ۱ میلیون دنبالکننده در شبکههای اجتماعی.
او بهواسطه تجربه بالا، سادگی در بیان مفاهیم پیچیده، و طراحی مسیرهای یادگیری عملی، توانسته اعتماد هزاران نفر در سراسر دنیا را جلب کند.
🏫 درباره بوتکمپ:
بوتکمپ ۶ هفتهای "Community Edition" با هدف توانمندسازی علاقهمندان به مهندسی داده، به صورت رایگان و با تمرکز بر مهارتهای کاربردی برگزار میشود.
این برنامه آموزشی، ترکیبی از ویدیوهای آموزشی، تمرینهای هفتگی با ارزیابی خودکار، پروژههای واقعی، و در نهایت صدور مدرک پایان دوره است.
🧠 سرفصلهای آموزشی:
📚 مدلسازی دادههای بعدی و واقعی – طراحی ساختارهای تحلیلی پیشرفته
📚 پردازش دادههای کلان با سرعت بالا - Apache Spark و PySpark
📚 ساخت پایپلاینهای بلادرنگ و مدیریت جریان داده - Apache Flink و Kafka
📚 الگوهای تحلیلی و طراحی شاخصهای کلیدی عملکرد (KPI)
📚 کیفیت داده و مستندسازی حرفهای مانند Airbnb
📚 مصورسازی داده با Tableau و ارائه اثرگذار یافتهها
📚نگهداری و بهبود پایپلاینهای دادهای در محیط واقعی
🎯 چرا این بوتکمپ ارزشمند است؟
🔹 نگاه عملیاتی و واقعی به مسائل مهندسی داده
🔹 طراحی شده توسط تیمی با تجربه بینالمللی و پروژههای کلان
🔹 یادگیری مبتنی بر سناریوهای واقعی شغلی
🔹 مناسب برای افرادی که بهدنبال مهاجرت شغلی، ارتقای جایگاه کاری یا ورود به بازارهای جهانی هستند
🔹 امکان تعامل با جامعه جهانی مهندسان داده در Discord
🔹 دریافت مدرک پایان دوره بهصورت رسمی
📥 مراحل ثبتنام:
ثبتنام رایگان در سایت: learn.dataexpert.io
دریافت هندبوک و تمرینها: https://github.com/DataExpert-io/data-engineer-handbook
عضویت در کامیونیتی و گروه پشتیبانی در دیسکورد: لینک عضویت
ارسال تمرینهای هفتگی – برای حفظ نظم و یادگیری تدریجی
📌 تا امروز بیش از ۵۰ هزار نفر از سراسر دنیا ثبتنام کردهاند
🎯 زک ویلسون پیشبینی کرده تنها حدود ۵۰۰ نفر به پایان مسیر و دریافت گواهی میرسند
اگر دنبال تعهد، رشد حرفهای و یادگیری واقعی هستی، تو هم یکی از آنها باش.
جزو ۱٪ افراد مصمم باش!
#بوتکمپ_داده #مهندسی_داده #DataEngineering #ApacheSpark #Flink #Kafka #SQL #Python #DataQuality #Tableau #آموزش_کاربردی #مدرک_بینالمللی #ZackWilson #DataExpert #دوره_رایگان #DataCareer
در دنیای امروز، یادگیری مهارتهای عملی و نزدیک به پروژههای واقعی، مهمترین مزیت رقابتی برای ورود به بازار کار حوزه داده است.
اگر شما هم به دنبال فرصتی برای یادگیری ساختیافته، کاربردی، و تحت نظر یک تیم متخصص بینالمللی هستید، این بوتکمپ رایگان مهندسی داده یک فرصت بینظیر است.
👨🏫 برگزارکننده: Zach Wilson
مؤسس DataExpert.io و از شناختهشدهترین چهرههای حوزه داده با بیش از ۱ میلیون دنبالکننده در شبکههای اجتماعی.
او بهواسطه تجربه بالا، سادگی در بیان مفاهیم پیچیده، و طراحی مسیرهای یادگیری عملی، توانسته اعتماد هزاران نفر در سراسر دنیا را جلب کند.
🏫 درباره بوتکمپ:
بوتکمپ ۶ هفتهای "Community Edition" با هدف توانمندسازی علاقهمندان به مهندسی داده، به صورت رایگان و با تمرکز بر مهارتهای کاربردی برگزار میشود.
این برنامه آموزشی، ترکیبی از ویدیوهای آموزشی، تمرینهای هفتگی با ارزیابی خودکار، پروژههای واقعی، و در نهایت صدور مدرک پایان دوره است.
🧠 سرفصلهای آموزشی:
📚 مدلسازی دادههای بعدی و واقعی – طراحی ساختارهای تحلیلی پیشرفته
📚 پردازش دادههای کلان با سرعت بالا - Apache Spark و PySpark
📚 ساخت پایپلاینهای بلادرنگ و مدیریت جریان داده - Apache Flink و Kafka
📚 الگوهای تحلیلی و طراحی شاخصهای کلیدی عملکرد (KPI)
📚 کیفیت داده و مستندسازی حرفهای مانند Airbnb
📚 مصورسازی داده با Tableau و ارائه اثرگذار یافتهها
📚نگهداری و بهبود پایپلاینهای دادهای در محیط واقعی
🎯 چرا این بوتکمپ ارزشمند است؟
🔹 نگاه عملیاتی و واقعی به مسائل مهندسی داده
🔹 طراحی شده توسط تیمی با تجربه بینالمللی و پروژههای کلان
🔹 یادگیری مبتنی بر سناریوهای واقعی شغلی
🔹 مناسب برای افرادی که بهدنبال مهاجرت شغلی، ارتقای جایگاه کاری یا ورود به بازارهای جهانی هستند
🔹 امکان تعامل با جامعه جهانی مهندسان داده در Discord
🔹 دریافت مدرک پایان دوره بهصورت رسمی
📥 مراحل ثبتنام:
ثبتنام رایگان در سایت: learn.dataexpert.io
دریافت هندبوک و تمرینها: https://github.com/DataExpert-io/data-engineer-handbook
عضویت در کامیونیتی و گروه پشتیبانی در دیسکورد: لینک عضویت
ارسال تمرینهای هفتگی – برای حفظ نظم و یادگیری تدریجی
📌 تا امروز بیش از ۵۰ هزار نفر از سراسر دنیا ثبتنام کردهاند
🎯 زک ویلسون پیشبینی کرده تنها حدود ۵۰۰ نفر به پایان مسیر و دریافت گواهی میرسند
اگر دنبال تعهد، رشد حرفهای و یادگیری واقعی هستی، تو هم یکی از آنها باش.
جزو ۱٪ افراد مصمم باش!
#بوتکمپ_داده #مهندسی_داده #DataEngineering #ApacheSpark #Flink #Kafka #SQL #Python #DataQuality #Tableau #آموزش_کاربردی #مدرک_بینالمللی #ZackWilson #DataExpert #دوره_رایگان #DataCareer
GitHub
GitHub - DataExpert-io/data-engineer-handbook: This is a repo with links to everything you'd ever want to learn about data engineering
This is a repo with links to everything you'd ever want to learn about data engineering - DataExpert-io/data-engineer-handbook
❤1