مهندسی داده
813 subscribers
112 photos
7 videos
24 files
320 links
BigData.ir کانال رسمی وب سایت
مطالبی راجع به مهندسی داده و طراحی زیرساخت‌های پردازش دیتا و ابزارهای مدرن دیتا
ارتباط با ادمین: @smbanaei
گروه تخصصی مهندسی داده 👇
https://t.iss.one/bigdata_ir_discussions2
کانال یوتیوب 👇
https://www.youtube.com/@irbigdata
Download Telegram
معرفی Kedro 1.0 — فریمورکی حرفه‌ای برای ساخت پروژه‌های داده‌ای و هوش مصنوعی 🚀

در دنیای پیچیده داده و یادگیری ماشین، مدیریت پروژه‌های داده‌ای با کدهای پراکنده و مراحل متعدد چالش بزرگی است. Kedro با ارائه ساختاری منظم، به شما کمک می‌کند تا پروژه‌های خود را قابل توسعه، قابل تکرار و قابل اعتماد بسازید.


🔍 چالش اصلی:


در پروژه‌های داده‌ای واقعی، داده‌ها از منابع مختلف می‌آیند و مراحل متعددی باید طی شود. بدون چارچوبی منظم، کدها بی‌نظم و غیرقابل نگهداری می‌شوند و همکاری تیمی دشوار می‌شود.

Kedro این مشکلات را اینطور حل می‌کند:

📂 تقسیم پروژه به بخش‌های مستقل و قابل مدیریت

🔄 تعریف دقیق و قابل تکرار جریان‌های کاری (Pipeline)

📚 مدیریت داده‌ها در یک سیستم منسجم به نام DataCatalog

🤝 استانداردسازی برای همکاری آسان‌تر تیمی

📊 ابزارهای بصری برای مشاهده و مدیریت اجرای پروژه

⚙️ امکان توسعه و سازگاری با ابزارهای مختلف

💡 ویژگی‌های کلیدی Kedro 1.0:

نسخه ۱.۰ با بهبودهای فراوانی به شما قدرت می‌دهد تا پروژه‌های پیچیده را با اعتماد اجرا کنید و سریع‌تر توسعه دهید:

🔄 DataCatalog بازطراحی شده: مدیریت داده‌ها به شکلی ساده‌تر و قوی‌تر

🧩 بهبود فضای نام (Namespace): گروه‌بندی و استفاده انعطاف‌پذیرتر داده‌ها

🚀 بهبود رانرها: اجرای بهتر و پایدارتر جریان‌های کاری

📚 مستندات نوین: راهنمایی آسان و به‌روز برای شروع سریع

👁‍🗨 نمایش وضعیت خط لوله در Kedro Viz: نظارت بصری بر اجرای پروژه

🤖 آماده برای هوش مصنوعی نسل جدید: پشتیبانی از جریان‌های کاری پیشرفته و AI مولد

👥 چه کسانی باید از Kedro استفاده کنند؟

- دانشمندان داده و مهندسان یادگیری ماشین که دنبال کدی قابل بازتولید و سازمان‌یافته هستند

- مهندسان داده که خطوط لوله داده‌ای پیچیده می‌سازند و مدیریت می‌کنند

- تیم‌ها و سازمان‌هایی که می‌خواهند همکاری و هماهنگی پروژه‌های داده‌ای‌شان را بهبود دهند

- کسانی که وارد حوزه هوش مصنوعی مولد و پروژه‌های نوین داده‌ای می‌شوند


🌟 چرا Kedro 1.0 را انتخاب کنیم؟

با Kedro، پروژه‌های داده‌ای خود را به سطحی کاملاً حرفه‌ای می‌برید:

کدی منظم، قابل تست و مقیاس‌پذیر دارید که به رشد و تغییر پروژه کمک می‌کند و کار تیمی را ساده‌تر می‌کند.

📥 همین امروز شروع کنید!

Kedro ساده نصب می‌شود و جامعه بزرگی پشت آن است.

برای اطلاعات بیشتر و دریافت مستندات به kedro.org مراجعه کنید.

خلاصه در یک نگاه:


📂 ساختاردهی ماژولار پروژه‌ها

🔄 تعریف و مدیریت جریان‌های کاری

📚 DataCatalog پیشرفته

🤝 تسهیل همکاری تیمی

📊 ابزارهای نظارتی و بصری

⚙️ توسعه‌پذیری و سازگاری با ابزارهای نوین

🤖 آماده برای چالش‌های آینده AI

#Kedro #DataScience #MachineLearning #DataEngineering #AI #OpenSource #Python #DataPipeline #MLOps #GenerativeAI

چهارسال پیش هم این پروژه را در سایت مهندسی داده معرفی کردیم :‌

https://lnkd.in/dbn5pBFH
2
از Kafka تا Iceberg در کمتر از یک دقیقه؛ تجربه عملی AutoMQ
در مدرسه مهندسی داده سپهرام، همیشه تلاش کرده‌ایم جدیدترین فناوری‌های حوزه داده را به‌صورت کاربردی و قابل استفاده در پروژه‌های واقعی ارائه کنیم. در ویدئویی که اخیراً در کانال یوتیوب مدرسه منتشر شده است، به‌صورت کاملاً عملی کار با AutoMQ، جایگزین نوآورانه و cloud-first برای #Kafka و همچنین ذخیره‌سازی مستقیم داده‌های Kafka در Apache Iceberg و کوئری‌گیری آن با #DuckDB را بررسی کرده‌ایم.
این جلسه بخشی از رویکرد ما برای آموزش معماری‌های مدرن داده مانند Lakehouse، Zero-ETL و استریم‌پردازی ابری است.
🔰 اما AutoMQ‌ دقیقا چیست ؟
کتابخانه AutoMQ یک کافکای بازنویسی شده است که مستقیماً بر پایه کدهای Kafka توسعه یافته و تنها لایه ذخیره‌سازی آن بازطراحی شده است. در این معماری، پیام‌ها به جای ذخیره روی دیسک هر بروکر، در یک فضای ذخیره‌سازی خارجی مانند S3 یا MinIO قرار می‌گیرند. این تغییر مهم باعث می‌شود بتوان بروکرهای بدون دیسک داشت، مقیاس‌پذیری را بسیار ساده‌تر کرد و عملیات نگه‌داری را کاهش داد. علاوه بر این، AutoMQ در مدیریت خودکار مقیاس‌پذیری هنگام افزایش حجم داده، عملکردی به‌مراتب بهتر از Kafka سنتی ارائه می‌دهد و همین موضوع آن را به یک گزینه مناسب برای تیم‌های دواپس و محیط‌های با بار سنگین داده تبدیل کرده است


در این ویدئو، مباحث زیر به‌صورت مرحله‌به‌مرحله و عملی ارائه شده است:
✔️آشنایی با معماری AutoMQ و تفاوت آن با Kafka سنتی
✔️راه‌اندازی کامل AutoMQ، MinIO، Iceberg، Schema Registry و DuckDB با Docker Compose
✔️معرفی و تشریح قابلیت AutoMQ Table Topic
✔️ارسال داده Avro از طریق یک Producer پایتونی
✔️ذخیره‌سازی خودکار داده‌ها از Kafka در جداول Iceberg بدون Kafka Connect و بدون Flink/Spark
✔️بررسی قابلیت Zero-ETL در سناریوی واقعی
✔️یکپارچگی Schema Registry و انتقال خودکار اسکیمـا به Iceberg
✔️مشاهده داده‌های ذخیره‌شده در Iceberg و اجرای کوئری‌های تحلیلی با DuckDB
✔️بررسی قابلیت Time Travel، تکامل اسکیمـا (Schema Evolution) و Partitioning
✔️نکات مهم برای استقرار AutoMQ در محیط Production و تنظیمات پیشنهادی

برای مشاهده این آموزش کاربردی می‌توانید ویدئو را در کانال یوتیوب مدرسه مشاهده کنید:
🎥 پیوند ویدئو:
https://lnkd.in/d4ZHK4n8
#Kafka #ApacheIceberg #AutoMQ #DataEngineering #DataPipeline #ZeroETL #DuckDB #Lakehouse
👍62