معرفی DuckLake: سادهسازی Lakehouse با قدرت SQL
🔍 فرض کنید میخواهیم رفتار کاربران روی یک فروشگاه آنلاین را تحلیل کنیم. آمار کلی مثل نرخ کلیک، نرخ تبدیل و زمان حضور را در پایگاهداده ذخیره میکنیم — اما دادههای ریز و حجیم مثل تکتک کلیکهای کاربران روی محصولات را به صورت خام ذخیره میکنیم، بدون اینکه دیتابیسهای عملیاتی را سنگین کنیم. این دادههای خام به شکلی بهینه ذخیره میشوند که هر زمان نیاز داشتیم بتوانیم روی آنها کوئری اجرا کنیم و تحلیل عمیقتری داشته باشیم.
🧠 این همان فلسفهی #Lakehouse است:
ترکیب بهترین ویژگیهای Data Lake (انعطاف و مقیاسپذیری) و Data #Warehouse (ساختارمندی و قابلیت تحلیل)
اما واقعیت این است که #Lakehouse ها در عمل با پیچیدگیهایی همراه هستند:
برای هر جدول، باید اطلاعاتی مانند schema، نسخهها، تغییرات، پارتیشنبندی و ... در فرادادهها نگه داشته شود. این یعنی نیاز به سیستمهای اضافی کاتالوگها، متادیتاها و گاهی سرویسهای اضافی برای مدیریت نسخهها
📢 امروز #DuckDB با معرفی #DuckLake، پاسخی جسورانه و منطقی به این سوال داده است.
✅ اما سوال اصلی : DuckLake چیست؟
استاندارد DuckLake یک فرمت Open Table جدید برای معماری Lakehouse است که:
دادهها را در قالبهای باز مانند Parquet در Blob Storage ذخیره میکند؛
اما تمام فرادادهها (metadata)، snapshotها، schemaها و آمار را در یک پایگاه داده SQL ساده (مثل PostgreSQL یا خود DuckDB) مدیریت میکند.
🔍 چرا DuckLake یک تغییر بنیادین است؟
1. سادگی واقعی
برخلاف Iceberg و Delta که برای یک append ساده، باید چندین فایل JSON و Avro ایجاد یا بهروز کرد، در DuckLake همه چیز فقط چند query ساده SQL است.
نیازی به لایهی اضافهی catalog server یا فایلهای اضافی نیست. فقط یک دیتابیس و فایلهای Parquet.
2. مدیریت تراکنشپذیر (ACID) واقعی
تغییرات در جدولها، snapshotها و آمار ستونها در یک تراکنش واحد SQL انجام میشود. این یعنی:
📌atomic commitها؛
📌پشتیبانی از تغییرات پیچیده و multi-table؛
📌 بدون ترس از ناسازگاری فایلها در blob storage.
3. سازگاری، مقیاسپذیری و سرعت
میتوانید DuckLake را با DuckDB روی لپتاپ اجرا کنید یا با PostgreSQL روی کلاود.
برخلاف ساختارهای فایلمحور، پردازشها سریعتر، قابل کششدن و قابل مشاهدهاند.
محدود به هیچ vendor خاصی نیستید؛ جابهجایی آسان است.
🏗 یک نگاه به معماری DuckLake:
📁 دادهها → Parquet روی S3 یا هر blob store
📚 فراداده → SQL Tables روی DuckDB/PostgreSQL/...
🔁 عملیات → فقط SQL transactions ساده با DuckDB
🧠 چرا مهم است؟
در حالی که بسیاری از معماریهای داده در مسیر «Lakehouse» پیچیدگیهای جدیدی اضافه میکنند، DuckLake مسیر را به عقب برمیگرداند و از یک حقیقت ساده دفاع میکند:
وقتی که به هر حال از یک دیتابیس استفاده میکنیم، چرا بقیهی بخشها را هم در همان قالب SQL مدیریت نکنیم؟
📌 نتیجهگیری
استاندارد DuckLake نه فقط یک فرمت جدید، بلکه بازاندیشی دوبارهای است در طراحی Lakehouse — مبتنی بر اصل «سادگی، مقیاسپذیری، سرعت». اگر به دنبال آیندهای پایدارتر، قابل نگهداریتر و بدون vendor lock-in برای lakehouse هستید، DuckLake را جدی بگیرید.
📎 مطالعهی کامل مقاله: https://duckdb.org/2025/05/27/ducklake.html
#DuckDB #DuckLake #DataEngineering #Lakehouse #OpenFormats #SQL #Parquet #PostgreSQL
🔍 فرض کنید میخواهیم رفتار کاربران روی یک فروشگاه آنلاین را تحلیل کنیم. آمار کلی مثل نرخ کلیک، نرخ تبدیل و زمان حضور را در پایگاهداده ذخیره میکنیم — اما دادههای ریز و حجیم مثل تکتک کلیکهای کاربران روی محصولات را به صورت خام ذخیره میکنیم، بدون اینکه دیتابیسهای عملیاتی را سنگین کنیم. این دادههای خام به شکلی بهینه ذخیره میشوند که هر زمان نیاز داشتیم بتوانیم روی آنها کوئری اجرا کنیم و تحلیل عمیقتری داشته باشیم.
🧠 این همان فلسفهی #Lakehouse است:
ترکیب بهترین ویژگیهای Data Lake (انعطاف و مقیاسپذیری) و Data #Warehouse (ساختارمندی و قابلیت تحلیل)
اما واقعیت این است که #Lakehouse ها در عمل با پیچیدگیهایی همراه هستند:
برای هر جدول، باید اطلاعاتی مانند schema، نسخهها، تغییرات، پارتیشنبندی و ... در فرادادهها نگه داشته شود. این یعنی نیاز به سیستمهای اضافی کاتالوگها، متادیتاها و گاهی سرویسهای اضافی برای مدیریت نسخهها
اما : چرا وقتی به هر حال به یک دیتابیس نیاز داریم (برای کاتالوگ)، از ابتدا همه چیز را در SQL مدیریت نکنیم؟
📢 امروز #DuckDB با معرفی #DuckLake، پاسخی جسورانه و منطقی به این سوال داده است.
✅ اما سوال اصلی : DuckLake چیست؟
استاندارد DuckLake یک فرمت Open Table جدید برای معماری Lakehouse است که:
دادهها را در قالبهای باز مانند Parquet در Blob Storage ذخیره میکند؛
اما تمام فرادادهها (metadata)، snapshotها، schemaها و آمار را در یک پایگاه داده SQL ساده (مثل PostgreSQL یا خود DuckDB) مدیریت میکند.
🔍 چرا DuckLake یک تغییر بنیادین است؟
1. سادگی واقعی
برخلاف Iceberg و Delta که برای یک append ساده، باید چندین فایل JSON و Avro ایجاد یا بهروز کرد، در DuckLake همه چیز فقط چند query ساده SQL است.
نیازی به لایهی اضافهی catalog server یا فایلهای اضافی نیست. فقط یک دیتابیس و فایلهای Parquet.
2. مدیریت تراکنشپذیر (ACID) واقعی
تغییرات در جدولها، snapshotها و آمار ستونها در یک تراکنش واحد SQL انجام میشود. این یعنی:
📌atomic commitها؛
📌پشتیبانی از تغییرات پیچیده و multi-table؛
📌 بدون ترس از ناسازگاری فایلها در blob storage.
3. سازگاری، مقیاسپذیری و سرعت
میتوانید DuckLake را با DuckDB روی لپتاپ اجرا کنید یا با PostgreSQL روی کلاود.
برخلاف ساختارهای فایلمحور، پردازشها سریعتر، قابل کششدن و قابل مشاهدهاند.
محدود به هیچ vendor خاصی نیستید؛ جابهجایی آسان است.
🏗 یک نگاه به معماری DuckLake:
📁 دادهها → Parquet روی S3 یا هر blob store
📚 فراداده → SQL Tables روی DuckDB/PostgreSQL/...
🔁 عملیات → فقط SQL transactions ساده با DuckDB
🧠 چرا مهم است؟
در حالی که بسیاری از معماریهای داده در مسیر «Lakehouse» پیچیدگیهای جدیدی اضافه میکنند، DuckLake مسیر را به عقب برمیگرداند و از یک حقیقت ساده دفاع میکند:
وقتی که به هر حال از یک دیتابیس استفاده میکنیم، چرا بقیهی بخشها را هم در همان قالب SQL مدیریت نکنیم؟
📌 نتیجهگیری
استاندارد DuckLake نه فقط یک فرمت جدید، بلکه بازاندیشی دوبارهای است در طراحی Lakehouse — مبتنی بر اصل «سادگی، مقیاسپذیری، سرعت». اگر به دنبال آیندهای پایدارتر، قابل نگهداریتر و بدون vendor lock-in برای lakehouse هستید، DuckLake را جدی بگیرید.
📎 مطالعهی کامل مقاله: https://duckdb.org/2025/05/27/ducklake.html
#DuckDB #DuckLake #DataEngineering #Lakehouse #OpenFormats #SQL #Parquet #PostgreSQL
❤4👍1👌1
از استانداردسازی تا سادهسازی: آیندهی Iceberg در مهندسی داده
🔍تحلیلی بر دو تحول مهم: DuckLake و مقاله جدید MinIO
احتمالاً توی یک سال گذشته، بارها چشمتون به مقالات، ابزارها، یا گفتگوهایی افتاده که حولوحوش موضوعی به اسم #Iceberg میچرخن — یه استاندارد باز و ساختیافته برای ذخیره دادهها بهصورت خام، اما با قابلیتهایی شبیه پایگاه داده:
📌امکان اجرای کوئریهای تحلیلی مستقیم روی فایلهای Parquet
📌پشتیبانی از schema evolution و تراکنشهای ACID
📌و جداسازی کامل ذخیرهسازی از موتور پردازش
و البته این موضوع فقط جهانی نیست — همین چند هفته پیش، در یکی از جلسات مشاوره که با یکی از شرکتهای بزرگ فولادی کشور بود، موضوع جلسه بررسی بهترین راه برای طراحی، راهاندازی، و مدیریت یک Lakehouse مبتنی بر Iceberg بود. کاری که تیم فنی این شرکت، نسخه اولیه آنرا راه اندازی کرده بود. 🚀
🔄 اما دو اتفاق باعث شد که احساس کنم : آیندهی Iceberg بسیار سادهتر و سبکتر خواهد بود.
🌟 اولی معرفی DuckLake بود - https://ducklake.select.
در دنیایی که پر بود از سرویسهای کاتالوگ مختلف (Hive Metastore، Glue، Project Nessie، JDBC Metastore و...)، #DuckLake اومد و گفت:
«همهی اینا رو بذارید کنار! من با یه دیتابیس SQL ساده، همه کارهای مدیریت متادیتا و فایلهای داده رو انجام میدم.»
📦 دادهها همون Parquet هستن روی object storage، اما متادیتا داخل یه دیتابیس ساده مثل #DuckDB یا #Postgres ذخیره میشن. همه چیز از طریق #SQL مدیریت میشه. بدون نیاز به سرویسهای جانبی، بدون پیچیدگی. دقیقاً شبیه #SQLite برای دیتالیکها.
🔥 و استقبال خوبی هم ازش شده. چون سادهتر از Iceberg معمولی راه میافته و سربار کمتری داره.
🧠 دومین اتفاق، مقالهای بود که همین چند روز پیش از طرف MinIO منتشر شد.
https://blog.min.io/the-case-for-native-iceberg-catalog-apis-and-unified-governance-in-object-storage
این مقاله به یه نقطهضعف مهم در معماریهای فعلی دیتالیک اشاره میکرد:
«متادیتا و دسترسی به فایلهای واقعی داده، در دو سیستم جداگانه کنترل میشن. همین باعث میشه امنیت و حاکمیت داده ناقص باقی بمونه.»
یعنی ممکنه کاربر به جدول Iceberg مجوز نداشته باشه، ولی هنوز بتونه مستقیم فایلهای #Parquet رو از #S3 یا #MinIO بخونه! 😬
استوریج MinIO پیشنهاد داده که APIهای Iceberg Catalog بهصورت بومی در خود پلتفرم ذخیرهسازی تعبیه بشن، طوری که هم متادیتا و هم دسترسی به فایلها، از یکجا و با یک مدل امنیتی مدیریت بشن. این یعنی سادگی بیشتر، امنیت بهتر، و مدیریت یکپارچهتر.
🔮 پیشبینی من؟
ما داریم به سمتی میریم که: Iceberg دیگه یه «ابزار حرفهای مخصوص متخصصها» نیست — بلکه تبدیل میشه به یک استاندارد ساده، امن، و در دسترس برای همه تیمهای داده
#ApacheIceberg #DuckLake #MinIO #DataLakehouse #MetadataGovernance #ObjectStorage #OpenTableFormats #SQL #دیتالیک #مهندسی_داده #Parquet #BigData
🔍تحلیلی بر دو تحول مهم: DuckLake و مقاله جدید MinIO
احتمالاً توی یک سال گذشته، بارها چشمتون به مقالات، ابزارها، یا گفتگوهایی افتاده که حولوحوش موضوعی به اسم #Iceberg میچرخن — یه استاندارد باز و ساختیافته برای ذخیره دادهها بهصورت خام، اما با قابلیتهایی شبیه پایگاه داده:
📌امکان اجرای کوئریهای تحلیلی مستقیم روی فایلهای Parquet
📌پشتیبانی از schema evolution و تراکنشهای ACID
📌و جداسازی کامل ذخیرهسازی از موتور پردازش
🧊 بهجرات میشه گفت که #Iceberg یکی از ترندهای داغ این روزهای مهندسی دادهست — از Google BigQuery گرفته تا AWS S3، از Dremio تا Snowflake و پروژه Polaris، همگی در حال پشتیبانی مستقیم یا بومی از Iceberg هستن.
و البته این موضوع فقط جهانی نیست — همین چند هفته پیش، در یکی از جلسات مشاوره که با یکی از شرکتهای بزرگ فولادی کشور بود، موضوع جلسه بررسی بهترین راه برای طراحی، راهاندازی، و مدیریت یک Lakehouse مبتنی بر Iceberg بود. کاری که تیم فنی این شرکت، نسخه اولیه آنرا راه اندازی کرده بود. 🚀
🔄 اما دو اتفاق باعث شد که احساس کنم : آیندهی Iceberg بسیار سادهتر و سبکتر خواهد بود.
🌟 اولی معرفی DuckLake بود - https://ducklake.select.
در دنیایی که پر بود از سرویسهای کاتالوگ مختلف (Hive Metastore، Glue، Project Nessie، JDBC Metastore و...)، #DuckLake اومد و گفت:
«همهی اینا رو بذارید کنار! من با یه دیتابیس SQL ساده، همه کارهای مدیریت متادیتا و فایلهای داده رو انجام میدم.»
📦 دادهها همون Parquet هستن روی object storage، اما متادیتا داخل یه دیتابیس ساده مثل #DuckDB یا #Postgres ذخیره میشن. همه چیز از طریق #SQL مدیریت میشه. بدون نیاز به سرویسهای جانبی، بدون پیچیدگی. دقیقاً شبیه #SQLite برای دیتالیکها.
🔥 و استقبال خوبی هم ازش شده. چون سادهتر از Iceberg معمولی راه میافته و سربار کمتری داره.
🧠 دومین اتفاق، مقالهای بود که همین چند روز پیش از طرف MinIO منتشر شد.
https://blog.min.io/the-case-for-native-iceberg-catalog-apis-and-unified-governance-in-object-storage
این مقاله به یه نقطهضعف مهم در معماریهای فعلی دیتالیک اشاره میکرد:
«متادیتا و دسترسی به فایلهای واقعی داده، در دو سیستم جداگانه کنترل میشن. همین باعث میشه امنیت و حاکمیت داده ناقص باقی بمونه.»
یعنی ممکنه کاربر به جدول Iceberg مجوز نداشته باشه، ولی هنوز بتونه مستقیم فایلهای #Parquet رو از #S3 یا #MinIO بخونه! 😬
استوریج MinIO پیشنهاد داده که APIهای Iceberg Catalog بهصورت بومی در خود پلتفرم ذخیرهسازی تعبیه بشن، طوری که هم متادیتا و هم دسترسی به فایلها، از یکجا و با یک مدل امنیتی مدیریت بشن. این یعنی سادگی بیشتر، امنیت بهتر، و مدیریت یکپارچهتر.
🔮 پیشبینی من؟
ما داریم به سمتی میریم که: Iceberg دیگه یه «ابزار حرفهای مخصوص متخصصها» نیست — بلکه تبدیل میشه به یک استاندارد ساده، امن، و در دسترس برای همه تیمهای داده
🌊 بهزودی، ساخت یک دریاچهداده قدرتمند، به اندازه راهاندازی یک دیتابیس ساده خواهد بود. و Iceberg ستون اصلی این تحول باقی میمونه.
#ApacheIceberg #DuckLake #MinIO #DataLakehouse #MetadataGovernance #ObjectStorage #OpenTableFormats #SQL #دیتالیک #مهندسی_داده #Parquet #BigData
DuckLake
DuckLake is an integrated data lake and catalog format
DuckLake delivers advanced data lake features without traditional lakehouse complexity by using Parquet files and your SQL database. It's an open, standalone format from the DuckDB team.
👍3👌2