Как OAC помогает бизнесу улучшить удержание клиентов и увеличить доход
Статья рассказывает, как OAC использует данные клиентов для создания эффективных стратегий удержания и развития, открывая новые возможности для продаж и повышения лояльности. Узнайте, как технологии меняют подход к работе с клиентами.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Статья рассказывает, как OAC использует данные клиентов для создания эффективных стратегий удержания и развития, открывая новые возможности для продаж и повышения лояльности. Узнайте, как технологии меняют подход к работе с клиентами.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
AI-Powered Analytics for Telecom: From Churn to Retention and Growth
In this article, we’ll explore how OAC turns customer data into action, helping providers strengthen loyalty through smarter retention strategies while also unlocking new growth opportunities through upselling, cross-selling, and innovative services.
Онлайн-студия big tech night
Если вас не будет в Москве в день ивента, подключайтесь к нашей онлайн-студии. Мы подготовили огненную программу, которая отличается от офлайн-активностей:
🔴 Выступления спикеров от компаний-организаторов и других топов в индустрии
🔴 Микс форматов — от дискуссий и интервью до фановых историй из жизни разработчиков
🔴 Интерактивы с комментариями зрителей
Проведём сразу два прямых эфира:
✨ Студия Hard
В формате дискуссий и интервью обсудим сложные темы — управление IT-командой, AI в разработке, запуск проектов на несколько бизнесов.
✨ Студия Soft
Настоящая вечеринка в формате Late Night Show. Будем общаться, шутить и делиться сокровенным — например, обсудим необычные хобби и безумные pet-проекты.
❗️ Можно переключаться между студиями, чтобы поймать все самые интересные темы.
💻 Мы в эфире 12 сентября с 18:00 до 21:00
❤️Зарегистрируйтесь на сайте, чтобы получить ссылку на трансляцию
Подписывайтесь:
💬 big tech night
Реклама. Рекламодатель: ООО "Яндекс" ИНН 7736207543
Это #партнёрский пост
Если вас не будет в Москве в день ивента, подключайтесь к нашей онлайн-студии. Мы подготовили огненную программу, которая отличается от офлайн-активностей:
🔴 Выступления спикеров от компаний-организаторов и других топов в индустрии
🔴 Микс форматов — от дискуссий и интервью до фановых историй из жизни разработчиков
🔴 Интерактивы с комментариями зрителей
Проведём сразу два прямых эфира:
✨ Студия Hard
В формате дискуссий и интервью обсудим сложные темы — управление IT-командой, AI в разработке, запуск проектов на несколько бизнесов.
✨ Студия Soft
Настоящая вечеринка в формате Late Night Show. Будем общаться, шутить и делиться сокровенным — например, обсудим необычные хобби и безумные pet-проекты.
❗️ Можно переключаться между студиями, чтобы поймать все самые интересные темы.
💻 Мы в эфире 12 сентября с 18:00 до 21:00
❤️Зарегистрируйтесь на сайте, чтобы получить ссылку на трансляцию
Подписывайтесь:
💬 big tech night
Реклама. Рекламодатель: ООО "Яндекс" ИНН 7736207543
Это #партнёрский пост
Критерий Кендалла W: Почему рейтинги BI друг другу противоречат, и что с этим делать?
Привет, Хабр! Сегодня я хочу рассказать о применении одного из интересных методов работы со статистическими данными — расчета коэффициента конкордации, который также называют коэффициентом Кендалла W. Он помог нам упростить выбор BI-платформы на замену многострадальному Qlik, который сегодня вообще непонятно как продлевать. Под катом — куча BI-систем, наши попытки усреднить результаты рейтингов…и г-н Кендалл с его методом 100-летней давности.
Читать: https://habr.com/ru/articles/942068/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр! Сегодня я хочу рассказать о применении одного из интересных методов работы со статистическими данными — расчета коэффициента конкордации, который также называют коэффициентом Кендалла W. Он помог нам упростить выбор BI-платформы на замену многострадальному Qlik, который сегодня вообще непонятно как продлевать. Под катом — куча BI-систем, наши попытки усреднить результаты рейтингов…и г-н Кендалл с его методом 100-летней давности.
Читать: https://habr.com/ru/articles/942068/
#ru
@big_data_analysis | Другие наши каналы
Библиотека OutboxML от Страхового Дома ВСК
Хабр, привет!
Меня зовут Семён Семёнов, я руковожу Data Science и Machine Learning в Страховом Доме ВСК. В этой статье расскажу, как мы создали систему автоматического обучения и развёртывания моделей машинного обучения с открытым исходным кодом.
Первый вопрос, который может задать себе читатель, знакомый с темой современного машинного обучения:
«Почему бы не взять одну из десятков (если не сотен) открытых AutoML-библиотек?»
Ответ прост: мы не стремились создать ещё один «стандартный» проект AutoML. Наша цель — сфокусироваться на вещах, которые редко встречаются в готовых решениях:
Читать: https://habr.com/ru/companies/vsk_insurance/articles/942110/
#ru
@big_data_analysis | Другие наши каналы
Хабр, привет!
Меня зовут Семён Семёнов, я руковожу Data Science и Machine Learning в Страховом Доме ВСК. В этой статье расскажу, как мы создали систему автоматического обучения и развёртывания моделей машинного обучения с открытым исходным кодом.
Первый вопрос, который может задать себе читатель, знакомый с темой современного машинного обучения:
«Почему бы не взять одну из десятков (если не сотен) открытых AutoML-библиотек?»
Ответ прост: мы не стремились создать ещё один «стандартный» проект AutoML. Наша цель — сфокусироваться на вещах, которые редко встречаются в готовых решениях:
Читать: https://habr.com/ru/companies/vsk_insurance/articles/942110/
#ru
@big_data_analysis | Другие наши каналы
Как стать ML-инженером? От студента до Senior
В этой статье вы узнаете кто такой ML-инженер, чем он занимается, какие направления есть в этой профессии, а также узнаете список технологий, который нужно знать для работы в профессии.
Читать: «Как стать ML-инженером? От студента до Senior»
#ru
@big_data_analysis | Другие наши каналы
В этой статье вы узнаете кто такой ML-инженер, чем он занимается, какие направления есть в этой профессии, а также узнаете список технологий, который нужно знать для работы в профессии.
Читать: «Как стать ML-инженером? От студента до Senior»
#ru
@big_data_analysis | Другие наши каналы
Как мы мигрировали на новый шардированный кластер ClickHouse
Всем привет! Меня зовут Мурад Арфанян, я разработчик информационных систем в Ozon Tech. Наша команда работает с данными жизненного цикла товаров в логистике. Объём продаж растет стремительными темпами и нешардированный ClickHouse уже не справляется с постоянно увеличивающимися потоками данных. Чтобы решить эту задачу, мы построили шардированный кластер, преодолев на пути несколько интересных технических вызовов. В этой статье я расскажу о нашем опыте и решениях, которые помогли масштабировать систему и обеспечить стабильную работу при росте нагрузки.
Читать: https://habr.com/ru/companies/ozontech/articles/932434/
#ru
@big_data_analysis | Другие наши каналы
Всем привет! Меня зовут Мурад Арфанян, я разработчик информационных систем в Ozon Tech. Наша команда работает с данными жизненного цикла товаров в логистике. Объём продаж растет стремительными темпами и нешардированный ClickHouse уже не справляется с постоянно увеличивающимися потоками данных. Чтобы решить эту задачу, мы построили шардированный кластер, преодолев на пути несколько интересных технических вызовов. В этой статье я расскажу о нашем опыте и решениях, которые помогли масштабировать систему и обеспечить стабильную работу при росте нагрузки.
Читать: https://habr.com/ru/companies/ozontech/articles/932434/
#ru
@big_data_analysis | Другие наши каналы
🔥3
Реализация А/Б-тестов
Для А/Б-тестов в вебе показаны случайный выбор групп, хэширование, логика на бэкэнде и фронтэнде, логирование событий, одновременные эксперименты и админка. Примеры демонстрируют реализацию А/Б-тестов и устройство платформ экспериментов.
Читать
Читать: https://habr.com/ru/articles/940118/
#ru
@big_data_analysis | Другие наши каналы
Для А/Б-тестов в вебе показаны случайный выбор групп, хэширование, логика на бэкэнде и фронтэнде, логирование событий, одновременные эксперименты и админка. Примеры демонстрируют реализацию А/Б-тестов и устройство платформ экспериментов.
Читать
Читать: https://habr.com/ru/articles/940118/
#ru
@big_data_analysis | Другие наши каналы
Скрытая угроза: как LLM заражают друг друга предубеждениями через «безобидные» данные
tl;dr. Мы изучаем сублиминальное обучение — неожиданное явление, при котором языковые модели перенимают свойства из данных, сгенерированных другой моделью, даже если эти данные семантически никак не связаны с передаваемыми свойствами. Например, «студент» начинает предпочитать сов, если его обучить на последовательностях чисел, сгенерированных «учителем», который предпочитает сов. Тот же феномен способен передавать misalignment через данные, которые выглядят абсолютно безобидными. Этот эффект проявляется только в том случае, если учитель и студент основаны на одной и той же базовой модели.
Исследование проведено в рамках программы Anthropic Fellows. Эта статья также опубликована в блоге Anthropic Alignment Science.
Читать: https://habr.com/ru/articles/937278/
#ru
@big_data_analysis | Другие наши каналы
tl;dr. Мы изучаем сублиминальное обучение — неожиданное явление, при котором языковые модели перенимают свойства из данных, сгенерированных другой моделью, даже если эти данные семантически никак не связаны с передаваемыми свойствами. Например, «студент» начинает предпочитать сов, если его обучить на последовательностях чисел, сгенерированных «учителем», который предпочитает сов. Тот же феномен способен передавать misalignment через данные, которые выглядят абсолютно безобидными. Этот эффект проявляется только в том случае, если учитель и студент основаны на одной и той же базовой модели.
Исследование проведено в рамках программы Anthropic Fellows. Эта статья также опубликована в блоге Anthropic Alignment Science.
Читать: https://habr.com/ru/articles/937278/
#ru
@big_data_analysis | Другие наши каналы
❤1
Устраиваем свой Data QA с PyTest и фикстурами
Рабочий подход к тестированию трансформации данных в ETL-процессах. На примере Python-проекта с pytest, allure и psycopg2 демонстрируется, как автоматизировать создание и наполнение таблиц, хранить схемы и данные, а затем сравнивать результат.
Читать: «Устраиваем свой Data QA с PyTest и фикстурами»
#ru
@big_data_analysis | Другие наши каналы
Рабочий подход к тестированию трансформации данных в ETL-процессах. На примере Python-проекта с pytest, allure и psycopg2 демонстрируется, как автоматизировать создание и наполнение таблиц, хранить схемы и данные, а затем сравнивать результат.
Читать: «Устраиваем свой Data QA с PyTest и фикстурами»
#ru
@big_data_analysis | Другие наши каналы
Обзор UDTF в PySpark
Привет, Хабр!
Сегодня разберём фичу из PySpark — UDTF. Если раньше мы писали UDF и UDAF, то UDTF — это про функцию, которая запускается в секции
UDTFs пригодятся, когда на один входной объект нужно получить множество выходных строк. Простой пример: у нас есть строка текста и мы хотим разделить её на слова так, чтобы каждое слово вышло отдельной строкой. Со стандартным UDF такое не сделать (он возвращает одно значение, например конкатенацию или длину). Но UDTF может делать цикл
Читать: https://habr.com/ru/companies/otus/articles/942148/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр!
Сегодня разберём фичу из PySpark — UDTF. Если раньше мы писали UDF и UDAF, то UDTF — это про функцию, которая запускается в секции
FROM
запроса и возвращает как бы несколько стро» для каждой входной записи Звучит круто.UDTFs пригодятся, когда на один входной объект нужно получить множество выходных строк. Простой пример: у нас есть строка текста и мы хотим разделить её на слова так, чтобы каждое слово вышло отдельной строкой. Со стандартным UDF такое не сделать (он возвращает одно значение, например конкатенацию или длину). Но UDTF может делать цикл
yield
внутри и выдавать сколько угодно строк. Итак, приступим к делу.Читать: https://habr.com/ru/companies/otus/articles/942148/
#ru
@big_data_analysis | Другие наши каналы
Техническая внутренняя кухня StarRocks: оптимизация JOIN — от логики до распределённого выполнения
Как StarRocks добивается высокой производительности JOIN-запросов в аналитических нагрузках. В материале — практическая кухня оптимизатора: какие типы JOIN эффективнее и когда их стоит конвертировать (например, CROSS→INNER, OUTER→INNER при NULL‑отвергающих предикатах), как работает predicate pushdown, извлечение предикатов из OR, вывод эквивалентностей и pushdown LIMIT. Разбираем Join Reorder для многотабличных запросов (Left‑Deep, Exhaustive, Greedy, DPsub), модель стоимости (CPU*(Row(L)+Row(R))+Memory*Row(R)) и выбор лучшего плана.
На уровне распределённого исполнения — MPP‑архитектура, свойства распределения (Distribution Property) и узлы Exchange; пять базовых планов: Shuffle, Broadcast, Bucket Shuffle, Colocate и экспериментальный Replicate Join. Плюс Global Runtime Filter (Min/Max, IN, Bloom) для ранней фильтрации на Scan. Даем практические принципы: используйте более быстрые типы JOIN, стройте хеш по малой таблице, в многоJOINовых запросах сперва выполняйте высокоселективные соединения, сокращайте объём данных и сетевой трафик. Материал для инженеров данных, DBA, разработчиков OLAP и всех, кто проектирует производительные SQL‑планы.
Читать: https://habr.com/ru/articles/943050/
#ru
@big_data_analysis | Другие наши каналы
Как StarRocks добивается высокой производительности JOIN-запросов в аналитических нагрузках. В материале — практическая кухня оптимизатора: какие типы JOIN эффективнее и когда их стоит конвертировать (например, CROSS→INNER, OUTER→INNER при NULL‑отвергающих предикатах), как работает predicate pushdown, извлечение предикатов из OR, вывод эквивалентностей и pushdown LIMIT. Разбираем Join Reorder для многотабличных запросов (Left‑Deep, Exhaustive, Greedy, DPsub), модель стоимости (CPU*(Row(L)+Row(R))+Memory*Row(R)) и выбор лучшего плана.
На уровне распределённого исполнения — MPP‑архитектура, свойства распределения (Distribution Property) и узлы Exchange; пять базовых планов: Shuffle, Broadcast, Bucket Shuffle, Colocate и экспериментальный Replicate Join. Плюс Global Runtime Filter (Min/Max, IN, Bloom) для ранней фильтрации на Scan. Даем практические принципы: используйте более быстрые типы JOIN, стройте хеш по малой таблице, в многоJOINовых запросах сперва выполняйте высокоселективные соединения, сокращайте объём данных и сетевой трафик. Материал для инженеров данных, DBA, разработчиков OLAP и всех, кто проектирует производительные SQL‑планы.
Читать: https://habr.com/ru/articles/943050/
#ru
@big_data_analysis | Другие наши каналы
👍1
Универсальные модели в видеоаналитике: единый фундамент для множества задач
Привет! С вами Кирилл Тузов, Data Scientist в команде видеоаналитики бэк-офиса Wildberries & Russ.
Камеры видят всё. Вопрос в том, распознают ли наши алгоритмы, что именно они видят, — и насколько быстро, надёжно и без тонны ручной работы это происходит. В этой статье я расскажу, как мы используем Self-Supervised, Zero-Shot и мультимодальные модели, чтобы приблизиться к максимально возможной эффективности.
Читать: https://habr.com/ru/companies/wildberries/articles/940530/
#ru
@big_data_analysis | Другие наши каналы
Привет! С вами Кирилл Тузов, Data Scientist в команде видеоаналитики бэк-офиса Wildberries & Russ.
Камеры видят всё. Вопрос в том, распознают ли наши алгоритмы, что именно они видят, — и насколько быстро, надёжно и без тонны ручной работы это происходит. В этой статье я расскажу, как мы используем Self-Supervised, Zero-Shot и мультимодальные модели, чтобы приблизиться к максимально возможной эффективности.
Читать: https://habr.com/ru/companies/wildberries/articles/940530/
#ru
@big_data_analysis | Другие наши каналы
Новый скрипт для мониторинга производительности
В статье рассказывается о скрипте, который отслеживает время всего процесса от входа до выхода и автоматически отправляет предупреждения при замедлениях, позволяя быстро реагировать и предотвращать проблемы для пользователей.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
В статье рассказывается о скрипте, который отслеживает время всего процесса от входа до выхода и автоматически отправляет предупреждения при замедлениях, позволяя быстро реагировать и предотвращать проблемы для пользователей.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Oracle Analytics Cloud Health Check with Python: Performance Monitoring and Alerts
This script isn’t just about automation — it’s a performance monitoring and alerts tool. It measures the full end-to-end time (login → export → logoff), and if the process runs slower than expected, it immediately raises an alert so teams can respond before…
Oracle Analytics AI Assistant: как настроить и использовать эффективно. В статье раскрываются основные шаги по настройке AI-ассистента, а также рекомендации для максимальной отдачи от его возможностей в аналитике. Полезно всем, кто работает с Oracle Analytics.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Oracle Analytics Cloud: All about Oracle Analytics AI Assistant
This article discusses the setup of the Oracle Analytics AI Assistant, ways to efficiently leverage this feature, and the best practices for configuring it.
Эспоо внедряет Oracle Cloud Applications и Fusion Data Intelligence для оптимизации финансового управления. Этот шаг помогает городу стать международно связанным и инновационным лидером в сфере цифровых технологий. Подробнее об инициативе и её перспективах.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Espoo – a city with ambition to be a digital leader
The City of Espoo adopts Oracle Cloud Applications and Fusion Data Intelligence for financial management in support of its desire to be an internationally connected pioneer city.
«Таргетинг Портал»: как мы сделали рекламные кампании проще и эффективнее
Привет, Habr! Меня зовут Катя, я продакт-менеджер BigData в «Группе Лента» и отвечаю за развитие цифровых продуктов в направлении монетизации данных. В статье расскажу, как нам удалось уйти от Excel-файлов и ручного согласования сегментов к автоматизированному порталу, с помощью которого рекламные агентства теперь сами собирают нужные им сегменты и выгружают их в MyTarget.
Читать: https://habr.com/ru/companies/lentatech/articles/943756/
#ru
@big_data_analysis | Другие наши каналы
Привет, Habr! Меня зовут Катя, я продакт-менеджер BigData в «Группе Лента» и отвечаю за развитие цифровых продуктов в направлении монетизации данных. В статье расскажу, как нам удалось уйти от Excel-файлов и ручного согласования сегментов к автоматизированному порталу, с помощью которого рекламные агентства теперь сами собирают нужные им сегменты и выгружают их в MyTarget.
Читать: https://habr.com/ru/companies/lentatech/articles/943756/
#ru
@big_data_analysis | Другие наши каналы
Зацените как похорошели транскрибации при Войси!
Вайб-кодинг вайб-кодингом, но как же не хватает простого человеческого «расшифруй мне созвон, только качественно!!». С этим вам поможет Войси.
🤯Этот ИИ-агент может с легкостью сделать из созвона текст, подвести итоги встречи и составить саммари. Войси переводит с 54 языков на русский без всяких артефактов и составляет текст в аккуратные абзацы с выделенными тезисами.
Самое удобное, что далеко ходить не надо — всё это делается прямо в «телеге». Экономьте своё время, превращая часы в минуты.
🔥А новичкам доступны 1,5 часа бесплатной транскрибации. Забирайте: https://tprg.ru/9xQo
Вайб-кодинг вайб-кодингом, но как же не хватает простого человеческого «расшифруй мне созвон, только качественно!!». С этим вам поможет Войси.
🤯Этот ИИ-агент может с легкостью сделать из созвона текст, подвести итоги встречи и составить саммари. Войси переводит с 54 языков на русский без всяких артефактов и составляет текст в аккуратные абзацы с выделенными тезисами.
Самое удобное, что далеко ходить не надо — всё это делается прямо в «телеге». Экономьте своё время, превращая часы в минуты.
🔥А новичкам доступны 1,5 часа бесплатной транскрибации. Забирайте: https://tprg.ru/9xQo
Как вытащить EdTech-компанию из кризиса за счет ИИ в IT-инфраструктуре
Привет, Хабр! Наверняка вы помните успех онлайн-школ во время пандемии — тогда каждый или кого-то учил, или чему-то учился. Однако за пять лет технологии шагнули вперед, а EdTech остался на том же уровне — и это привело к упадку. Зачем платить за курс, если нейросеть может научить чему угодно бесплатно (хоть к качеству обучения и возникают очевидные вопросики)?
В онлайн-школе IBLS смогли превратить ML из конкурента в союзника, и с его помощью осовременить процесс обучения для всех участников. Как это получилось — рассказываю под катом.
Читать: https://habr.com/ru/companies/selectel/articles/943634/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр! Наверняка вы помните успех онлайн-школ во время пандемии — тогда каждый или кого-то учил, или чему-то учился. Однако за пять лет технологии шагнули вперед, а EdTech остался на том же уровне — и это привело к упадку. Зачем платить за курс, если нейросеть может научить чему угодно бесплатно (хоть к качеству обучения и возникают очевидные вопросики)?
В онлайн-школе IBLS смогли превратить ML из конкурента в союзника, и с его помощью осовременить процесс обучения для всех участников. Как это получилось — рассказываю под катом.
Читать: https://habr.com/ru/companies/selectel/articles/943634/
#ru
@big_data_analysis | Другие наши каналы
🗣Интеллектуальная аналитика для data-driven компаний
11 сентября приглашаем BI-экспертов на Дельта Day — событие, посвящённое передовым тенденциям на рынке аналитики. Приходите и вы, если строите data-driven культуру в компании и хотите узнать больше о возможностях BI-систем.
На Дельта Day вы узнаете:
🔘На что обращать внимание при выборе BI-системы.
🔘Как интеграция BI и BPM помогает управлять продажами.
🔘Об особенностях дизайна и функционала мобильной аналитики.
🔘Чем Дельта BI отличается от других систем на рынке и подходит ли она именно вашему бизнесу.
Успейте зарегистрироваться — места ограничены.
11 сентября приглашаем BI-экспертов на Дельта Day — событие, посвящённое передовым тенденциям на рынке аналитики. Приходите и вы, если строите data-driven культуру в компании и хотите узнать больше о возможностях BI-систем.
На Дельта Day вы узнаете:
🔘На что обращать внимание при выборе BI-системы.
🔘Как интеграция BI и BPM помогает управлять продажами.
🔘Об особенностях дизайна и функционала мобильной аналитики.
🔘Чем Дельта BI отличается от других систем на рынке и подходит ли она именно вашему бизнесу.
Успейте зарегистрироваться — места ограничены.
RocksDB-стейт в стриминге: как ловить потерянные события и дубликаты
В стриминговых пайплайнах всё чаще приходится иметь дело не только с бесконечным потоком данных, но и с состоянием, которое нужно хранить и восстанавливать без потерь. С выходом Spark 3.2 у разработчиков появилась возможность подключать RocksDB в качестве state store — и это открывает новые горизонты для работы с большими объёмами данных. В статье разбираем, как использовать этот подход на практике: от борьбы с дубликатами и пропущенными событиями до тонкостей конфигурации и устойчивости стриминга.
Читать: https://habr.com/ru/companies/otus/articles/941412/
#ru
@big_data_analysis | Другие наши каналы
В стриминговых пайплайнах всё чаще приходится иметь дело не только с бесконечным потоком данных, но и с состоянием, которое нужно хранить и восстанавливать без потерь. С выходом Spark 3.2 у разработчиков появилась возможность подключать RocksDB в качестве state store — и это открывает новые горизонты для работы с большими объёмами данных. В статье разбираем, как использовать этот подход на практике: от борьбы с дубликатами и пропущенными событиями до тонкостей конфигурации и устойчивости стриминга.
Читать: https://habr.com/ru/companies/otus/articles/941412/
#ru
@big_data_analysis | Другие наши каналы
Скорость, стратегия и алгоритмы: будущее Формулы-1 в эпоху AI
Формула-1 всегда была местом пересечения инженерии и инноваций. В последние годы эта область инноваций расширилась за счёт внедрения искусственного интеллекта и машинного обучения.
От стратегии по выбору шин до аэродинамического дизайна — эти технологии меняют то, как команды планируют работу, реагируют на вызовы и развиваются. Они не заменяют человеческих специалистов, принимающих решения, но трансформируют набор инструментов, с которыми ведут борьбу за результат.
Читать: https://habr.com/ru/articles/937302/
#ru
@big_data_analysis | Другие наши каналы
Формула-1 всегда была местом пересечения инженерии и инноваций. В последние годы эта область инноваций расширилась за счёт внедрения искусственного интеллекта и машинного обучения.
От стратегии по выбору шин до аэродинамического дизайна — эти технологии меняют то, как команды планируют работу, реагируют на вызовы и развиваются. Они не заменяют человеческих специалистов, принимающих решения, но трансформируют набор инструментов, с которыми ведут борьбу за результат.
Читать: https://habr.com/ru/articles/937302/
#ru
@big_data_analysis | Другие наши каналы