Как за год вырастить персонализацию на главной: эволюция рекомендаций в fashion ecom
Привет, Хабр! Меня зовут Данил Комаров, я дата-сайентист в команде персонализации Lamoda Tech. Уже больше года мы меняем подход к рекомендациям на главной странице, делая их персонализированными. Я расскажу, как мы внедряли и масштабировали решение, переводили его из оффлайна в онлайн, и бустили систему на разных слоях.
Читать: https://habr.com/ru/companies/lamoda/articles/943272/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр! Меня зовут Данил Комаров, я дата-сайентист в команде персонализации Lamoda Tech. Уже больше года мы меняем подход к рекомендациям на главной странице, делая их персонализированными. Я расскажу, как мы внедряли и масштабировали решение, переводили его из оффлайна в онлайн, и бустили систему на разных слоях.
Читать: https://habr.com/ru/companies/lamoda/articles/943272/
#ru
@big_data_analysis | Другие наши каналы
Три сказа о построении RAG: От выбора модели до форматирования базы знаний
Привет! Меня зовут Александр Золотых, уже два года я работаю во ВкусВилле разработчиком ИИ-решений. В этой статье хочу рассказать, как мы сделали карманного консультанта по клиентократии — и зачем вообще он понадобился.
ВкусВилл работает по клиентократии — модели управления, которую развивает и распространяет система управления Beyond Taylor. Основная особенность клиентократии — фокус на клиенте, когда все процессы компании выстраиваются для удовлетворения его потребности. Модель инновационная: погружаешься, и возникает множество вопросов. Конечно, лучше спросить и узнать, чем не спросить и не узнать, но не всем и не всегда это просто. Значит, нужно снижать порог входа и сделать описание модели ближе к изучающему.
Именно из этого понимания у нашей команды и появилась идея карманного консультанта — инструмента, который готов отвечать на все «глупые» и каверзные вопросы. Мы поделились замыслом с коллегами из Beyond Taylor, получили их поддержку и приступили к реализации. Так родилась наша первая задача с тем, что сейчас называется RAG (Retrieval-Augmented Generation).
Конечно, есть готовые решения (Notebook LM, Нейроэксперт), но они имеют несколько минусов:
Читать: https://habr.com/ru/companies/vkusvill/articles/944202/
#ru
@big_data_analysis | Другие наши каналы
Привет! Меня зовут Александр Золотых, уже два года я работаю во ВкусВилле разработчиком ИИ-решений. В этой статье хочу рассказать, как мы сделали карманного консультанта по клиентократии — и зачем вообще он понадобился.
ВкусВилл работает по клиентократии — модели управления, которую развивает и распространяет система управления Beyond Taylor. Основная особенность клиентократии — фокус на клиенте, когда все процессы компании выстраиваются для удовлетворения его потребности. Модель инновационная: погружаешься, и возникает множество вопросов. Конечно, лучше спросить и узнать, чем не спросить и не узнать, но не всем и не всегда это просто. Значит, нужно снижать порог входа и сделать описание модели ближе к изучающему.
Именно из этого понимания у нашей команды и появилась идея карманного консультанта — инструмента, который готов отвечать на все «глупые» и каверзные вопросы. Мы поделились замыслом с коллегами из Beyond Taylor, получили их поддержку и приступили к реализации. Так родилась наша первая задача с тем, что сейчас называется RAG (Retrieval-Augmented Generation).
Конечно, есть готовые решения (Notebook LM, Нейроэксперт), но они имеют несколько минусов:
Читать: https://habr.com/ru/companies/vkusvill/articles/944202/
#ru
@big_data_analysis | Другие наши каналы
Dagster или Airflow: что выбрать для оркестрации в DWH-проектах?
Рассказываем, какие задачи решают оркестраторы в проектах внедрения корпоративных хранилищ данных. Выясняем, в чем разница между инструментами, и почему Dagster становится все популярнее в DWH-проектах, чем Airflow.
Читать: https://habr.com/ru/articles/944284/
#ru
@big_data_analysis | Другие наши каналы
Рассказываем, какие задачи решают оркестраторы в проектах внедрения корпоративных хранилищ данных. Выясняем, в чем разница между инструментами, и почему Dagster становится все популярнее в DWH-проектах, чем Airflow.
Читать: https://habr.com/ru/articles/944284/
#ru
@big_data_analysis | Другие наши каналы
Цифровой профиль в ВТБ: как графы и эмбеддинги помогают банку понимать клиентов
Статья рассказывает о том, как банк строит единый цифровой профиль клиента, используя графы и эмбеддинги. Вы узнаете, как разрозненные данные о транзакциях, связях и балансах превращаются в мощный инструмент для анализа и прогнозирования. Разберем, почему классических табличных подходов недостаточно и как графы помогают выявлять скрытые связи между клиентами, как клиенты «превращаются в слова» и на чем измеряется успех. Статья будет полезна data scientist’ам, ML-инженерам и всем, кто интересуется практическим применением графовых методов и машинного обучения в крупном бизнесе.
Читать: https://habr.com/ru/companies/vtb/articles/944338/
#ru
@big_data_analysis | Другие наши каналы
Статья рассказывает о том, как банк строит единый цифровой профиль клиента, используя графы и эмбеддинги. Вы узнаете, как разрозненные данные о транзакциях, связях и балансах превращаются в мощный инструмент для анализа и прогнозирования. Разберем, почему классических табличных подходов недостаточно и как графы помогают выявлять скрытые связи между клиентами, как клиенты «превращаются в слова» и на чем измеряется успех. Статья будет полезна data scientist’ам, ML-инженерам и всем, кто интересуется практическим применением графовых методов и машинного обучения в крупном бизнесе.
Читать: https://habr.com/ru/companies/vtb/articles/944338/
#ru
@big_data_analysis | Другие наши каналы
Практика Kafka: проектирование топиков и обмен сообщениями
Ранее мы с вами развернули кластер Kafka. Что дальше?
В этой статье, как всегда, переходим от теории к практике: разработаем собственные продюсер и консьюмер на Python. Это будет не просто демонстрация кода — мы погрузимся в детали работы с Kafka.
Подробно разберем структуру сообщений Kafka,
Углубимся в основы проектирования: от топиков до настройки клиентов,
На практике изучим ключевые процессы: сериализацию, партиционирование, батчинг и сжатие данных.
Читать: https://habr.com/ru/articles/944432/
#ru
@big_data_analysis | Другие наши каналы
Ранее мы с вами развернули кластер Kafka. Что дальше?
В этой статье, как всегда, переходим от теории к практике: разработаем собственные продюсер и консьюмер на Python. Это будет не просто демонстрация кода — мы погрузимся в детали работы с Kafka.
Подробно разберем структуру сообщений Kafka,
Углубимся в основы проектирования: от топиков до настройки клиентов,
На практике изучим ключевые процессы: сериализацию, партиционирование, батчинг и сжатие данных.
Читать: https://habr.com/ru/articles/944432/
#ru
@big_data_analysis | Другие наши каналы
👍3
Аналитика преимуществ в Fusion Data Intelligence
Benefits Analytics в Fusion Data Intelligence помогает менеджерам и администраторам не просто обрабатывать данные, а извлекать важные инсайты для принятия более эффективных решений в управлении преимуществами сотрудников.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Benefits Analytics в Fusion Data Intelligence помогает менеджерам и администраторам не просто обрабатывать данные, а извлекать важные инсайты для принятия более эффективных решений в управлении преимуществами сотрудников.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Unlocking Workforce Well-Being: Introducing the Benefits Subject Area in Oracle HCM Fusion Data Intelligence (FDI) – 25R2 Update
Explore how Benefits Analytics in Fusion Data Intelligence enables benefit managers and administrators to move beyond transactions and discover insights that shape better decisions.
Uber превращает водителей в дата-лейблеров ИИ: пилот в Индии
Uber запустил пилот в 12 городах Индии: водители размечают данные для ИИ прямо в приложении, получая допдоход. Инициатива Uber AI Solutions может масштабироваться глобально.
Читать: «Uber превращает водителей в дата-лейблеров ИИ: пилот в Индии»
#ru
@big_data_analysis | Другие наши каналы
Uber запустил пилот в 12 городах Индии: водители размечают данные для ИИ прямо в приложении, получая допдоход. Инициатива Uber AI Solutions может масштабироваться глобально.
Читать: «Uber превращает водителей в дата-лейблеров ИИ: пилот в Индии»
#ru
@big_data_analysis | Другие наши каналы