Ivan Begtin
7.98K subscribers
1.85K photos
3 videos
101 files
4.56K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
Ещё один полезный для чтения текст Open Source is not a Business Model
[1] в сторону продвижения Fair Source [2] как открытие кода с ограничениями не мешающими на нём зарабатывать.

Лично я считаю что Fair Source - это модель вполне имеющая право на существование. Станет популярной - хорошо, не станет - тоже хорошо.

Острота в дискуссиях об открытом коде возникает когда проекты меняют лицензию. Вроде того же Elastic с их прыжками по лицензиям, туда и обратно. Что не отменяет качество самого продукта, отметим.

Ссылки:
[1] https://cra.mr/open-source-is-not-a-business-model
[2] https://fair.io

#opensource #readings #softwaredevelopment
Симпатичный продукт для тетрадок работы с данными Briefer [1], обещают поддержку Python и SQL, генерацию Data apps, ИИ помощника и построение дашбордов.

Поддерживаются Y Combinator и даже с открытым кодом и ещё интереснее их рассказ о том почему они с открытым кодом и каково это открывать код когда тебя финансируют венчурный фонд [3]. Ожидаемо там про выбор AGPL лицензии.

Ссылки:
[1] https://briefer.cloud/
[2] https://github.com/briefercloud
[3] https://briefer.cloud/blog/posts/launching-briefer-oss/

#opensource #datatools #data
А помните я писал о том что хорошо бы многим продуктам иметь SQL интерфейс для продвинутых пользователей? Вместо API, в дополнение API Так вот всё больше такого появляется. К примеру? Hugging Face совсем недавно добавили SQL консоль.

Внутри там всё на базе DuckDB WASM и выглядит как весьма полезная фича.

К каким сервисам ещё бы очень хотелось иметь SQL консоли?
1. Всё что касается веб аналитики. Чтобы не тягать всё время из API и чтобы не испытывать мучения с их веб интерфейсами.
2. К почте, вот просто к корпоративной почте.
3. К любым другим массовым онлайн сервисам (?)


#sql #datatools #data
Команда OpenAIRE пишет про партнёрство с лабораторией SCImago [1], командой которая создала несколько продуктов по оценке и рэнкингу научных институций и стран. Кстати, если Вы не видели их рейтинг стран по научным публикациям, то стоит взглянуть [2] и, кстати, картинка о состоянии российской науки, вернее падения её интеграции в мировую и цитируемости. Я это комментировать не буду, уверен что найдутся те кто может объяснить эти процессы лучше меня.

Так вот партнёрство OpenAIRE и SCImago упоминается в контексте исследовательских данных и логично будет если вскоре появятся аналитические и визуальные продукты именно по публикации и доступности научных данных. Это будет любопытно.

Правда, важно всегда помнить что качество метаданных в индексе OpenAIRE не очень высокое, но точно выше чем в DataCite или в китайском ScienceDB.

Ссылки:
[1] https://www.openaire.eu/openaire-and-scimago-lab-unite-to-enhance-scholarly-research-data
[2] https://www.scimagojr.com/countryrank.php
[3] https://www.scimagojr.com/countrysearch.php?country=RU

#opendata #openaccess #openaire #europe #rankings
Яндекс запустили аналог досок Miro в виде продукта Яндекс.Концепт [1], это новость, хорошая, даже не в рамках импортозамещения, а то что MIro в какой-то момент стал неоправданно дорогим продуктом. Я лично какое-то время Miro пользовался, но где-то в 2021 году почти перестал.

Из плюсов:
- есть перенос из Miro, автоматизированный
- практически бесплатное использование на сегодняшний момент

Из минусов:
- функциональности поменьше
- не все доски импортируется, у меня не перенеслись примерно 50%, почти все они это майндмапы вроде того что на картинке.

А чтобы два раза не писать, альтернативы с открытым кодом:
- Jitsu Meet [2] если нужно совмещение с системой звонков

А также:
- https://github.com/toeverything/AFFiNE
- https://github.com/penpot/penpot
- https://github.com/excalidraw/excalidraw
- https://github.com/tldraw/tldraw

P.S. Кстати, системная проблема со всеми продуктами в этой области в отсутствии универсального формата/стандарта. Если выбираешь инструмент, то переносить из него потом очень непросто.

Ссылки:
[1] https://yandex.ru/company/news/01-12-09-2024
[2] https://jitsi.org/jitsi-meet/

#whiteboards #miro #alternatives #opensource
Давно размышляю о том как в научной среде публикуют данные и насколько всё зависит от научной дисциплины. В разных науках подход, инструменты, культура работы с данными и их доступность существенно отличаются.

Например, особняком идёт всё что касается life sciences особенно в части биоинформатики. Практически все исследования там, или создают данные, или используют и ссылаются на данные, или то и другое. Фактически это огромная связанная инфраструктура через стандарты, идентификаторы, специальные платформы и специализированные платформы и базы данных. Собственный мир развивающийся по собственным правилам.

Второй похожий блок - это науки о Земле включая климатологию, метеорологию, геофизику, науки о морях и океанах. По внутренним ощущениям там не так всё технологизировано, вернее, несколько консервативнее, но также это собственная экосистема.

Особняком данные связанные с ИИ, одна из областей где коммерческих данных может быть больше чем научных. Большая часть из них сконцентрированы в Kaggle и Hugging Face.

И отдельная история - это экономика, социальные науки, гуманитарные науки, госуправление и тд. Там данные если публикуются то скорее рассматриваются как один из результатов научной деятельности. Вот они публикуются, или на тех же ресурсах что и научные статьи, или на специализированных научных порталах общего типа.

Всё это сильно влияет на то как собирать данные, что считать датасетами, объём собираемых данных и так далее.

К примеру, сбор научных данных из репозиториев научных результатов - это, часто, поиск иголки в стоге сена. Не все научные репозитории поддерживают API и фильтрацию результатов по типу содержимого. Из репозиториев на базе DSpace, к примеру, надо вначале извлечь всё, а потом уже процеживать их по множеству критериев чтобы вытащить датасеты. Из 1 миллиона таких научных результатов, то что является датасетами будет 50-60 тысяч записей.

Возникает ситуация когда можно собирать научные данные и в процессе приходится ещё множество метаданных других научных работ и поисковик/поисковый индекс по научным работам получается автоматически. Как бы естественно. Но делать, его, вряд ли осмысленно поскольку таких поисковиков множество.

#thoughts #datasearch #openaccess #opendata
Обновлённая подборка государственных каталогов открытых API. Последний раз я писал о них полтора года назад за это время список пополнился:
- API.GOUV.FR - каталог API, стандарты и рекомендации Франции
- API.GOVERNMENT.AE - каталог API Объединённых Арабских эмиратов
- API.GOV.UK - каталог государственных API Великобритании
- API.GOV.AU - австралийский государственный стандарт предоставления API и каталог общедоступных API
- DEVELOPER.VIC.GOV.AU - портал для программистов (каталог API) правительства штата Виктория, Австралия
- API.NSW.GOV.AU - портал открытых API Нового Южного Уэльса, Австралия
- PORTAL.API.IPAUSTRALIA.GOV.AU - портал API патентного ведомства Австралии
- DEVELOPER.HEALTH.GOV.AU - B2G (Business To Government) портал API Департамента здравоохранения Австралии
- DEVELOPER.TECH.GOV.SG - портал для разработчиков от Правительства Сингапура, API, документация и тд.
- ESERVICES.MAS.GOV.SG - портал открытых API главного монетарного управления Сингапура (аналог центробанка)
- MYGDX.GOV.MY - каталог API на малазийском государственном портале MyGDX

В реальности каталогов API сильно больше, не везде они сразу бросаются в глаза.

#api #openapi
Полезное чтение про данные, технологии и не только:
- The Modern CLI Renaissance [1] о том как инструменты командной строки переживают ренессанс будучи переписанными, в основном, на Rust. Тоже наблюдаю эту картину и что тут скажешь, хорошо что это происходит.
- Nvidia and Oracle team up for Zettascale cluster: Available with up to 131,072 Blackwell GPUs [2] полным ходом гонка ИИ кластеров. Oracle и NVIDIA запускают в начале 2025 г. кластер на 2.4 зетафлопса, сравнивать сложно, это просто много
- Android apps are blocking sideloading and forcing Google Play versions instead [3] Google начали внедрять в андроид функцию установки приложения через Google Play если ты пытаешься поставить его из другого источника. То есть если ты из внешнего магазина загружаешь приложение которое есть в Google Play то тебя обязывают ставить то что в Google Play.
- Google will now link to The Internet Archive to add more context to Search results [4] Google теперь даёт ссылки в результатах поиска на Интернет Архив вместо их собственного кэша, на который они ранее ссылки удалили. Надеюсь они при этом дали денег Интернет Архиву, потому что как бы их не за ддосили.

Ссылки:
[1] https://gabevenberg.com/posts/cli-renaissance/
[2] https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidia-and-oracle-team-up-for-zettascale-cluster-available-with-up-to-131072-blackwell-gpus
[3] https://arstechnica.com/gadgets/2024/09/android-now-allows-apps-to-block-sideloading-and-push-a-google-play-version/
[4] https://9to5google.com/2024/09/11/google-search-internet-archive-wayback-machine/

#software #data #google #android #readings
В рубрике как это устроено у них, поисковик по биомедицинским датасетам DataMed [1], создан в Университете Калифорнии, Сан Диего, на грант 10 миллионов USD [2] от Национального института здравоохранения США и других грантодающих организаций.

С одной стороны, это действительно поисковик, с 49 проиндексированными репозиториями, 4-мя фасетами и 1.2 миллионами датасетов, а с другой стороны...

Из этих репозиториев топ 4 содержат 1 миллион датасетов, более 83% и, в целом, если пройтись по сайтам этих топ 4 репозиториев: ClinicalTrials, Gene Expression Omnibus, NeuroMorpho, Zenodo то их поиск содержит гораздо больше возможностей.

Кроме того сами особенности индексируемых данных учитываются, как бы сказать, никак.

Не выглядит, конечно, как продукт за 10 миллиона долларов, но даже в таком виде любопытен и потенциально полезен.

И конечно, это не поисковик, а по сути агрегатор репозиториев. Главное отличие поисковика по данным и агрегатора, в том что агрегатор создан быть проиндексированным поисковыми системами и у каждого датасета есть отдельная индексируемая страница. А поисковик не предполагает что его будут индексировать другие поисковики.

Ссылки:
[1] https://datamed.org
[2] https://reporter.nih.gov/project-details/1U24AI117966-01

#opendata #datasets #datasearch #datacatalogs #healthcare #bioinformatics
Про то как публикуют и работают с опубликованными датасетами расскажу про их публикацию по стандарту schema.org.

В Schema.org, наборе стандартов для публикации информации о разных объектах для удобства их индексирования, есть два типа объектов Dataset и DataCatalog. Первый описывает набор данных и включает довольно большое число атрибутов, редко заполненных полностью, но тем не менее. Второй описывает коллекцию наборов данных, как правило это наборы данных одного сайта, реже несколько каталогов данных на одном сайте.

Особенность в том что если объекты типа Dataset ещё более-менее встречаются, то DataCatalog - это безусловная редкость. К примеру, в проекте Web Data Common за 2023 год извлечено менее миллиона (839 тысяч) ссылок на страницы с объектами Dataset и совсем нет объектов типа DataCatalog. Нет не случайно, потому что даже беглая проверка по каталогам данных в Dateno registry показывает что в лучшем случае у каждого тысячного каталога данных есть эта разметка.

А вот разметка Dataset присутствует у многих каталогов, из широко известных, к примеру, Hugging Face и Kaggle. А вот к примеру, на общеевропейском портале data.europa.eu этой разметки нет, а на национальном портале США data.gov она сокращённая и даёт только минимальные атрибуты такие как название и ключевые слова, без детализации прикреплённых ресурсов или лицензий.

При этом в команде Google, полтора года назад упоминали что в их поисковом индексе Google Dataset Search есть 45 миллионов записей с 13 тысяч сайтов. Правда у них охват шире чем у Common Crawl, а также явно кроме объектов Dataset они добавляют в индекс объекты типа DataDownload, они тоже есть в спецификации schema.org и, наконец, Google Dataset Search индексирует датасеты через разметку RDFa, а по ней нет статистики из Common Crawl. В проекте Web Data Commons нет отдельной выгрузки объектов типа Dataset для RDFa.

Основных проблем со Schema.org две.

Первая в том что это добровольная разметка объектов и слишком часто ей размечают коммерческие данные и сервисы рассчитывая на продвижение в поиске Гугла. И действительно там в поиске много "мусора", данных не имеющих ценности, но проиндексированных и доступных для поиска.

Вторая в том что реально интересные каталоги данных Schema.org не поддерживают. Особенно это справедливо в отношении геоданных и геопорталы практически все используют только собственные стандарты публикации данных.

Собственно поэтому в Dateno основная индексация не через краулинг объектов Schema.org, а несколько десятков видов API.

#thoughts #datasearch #dateno
NASA Space Apps Challenge 2024 [1] проходит в этом году по всему миру и включает множество локальных мероприятий, в том числе на постсоветском пространстве, за исключением России, Беларуси, Киргизии и Армении [2]. Почему не проходят в Киргизии я не знаю, удивительно что нет в Армении, чувствую надо было самим организовать, а не думать что кто-то из околокосмической тусовки это сделает.

У НАСА на хакатоне есть набор задач [3], большая часть которых связаны с данными, например, по задаче Landsat Reflectance Data: On the Fly and at Your Fingertips, множество ссылок на открытые данные в KML, Shapefile и других [4].

Для тех кто учится и находится в странах где есть местные события этого глобального хакатона - это отличная возможность потренировать навыки в работе с данными и сделать что-то полезное.

Ссылки:
[1] https://www.spaceappschallenge.org/nasa-space-apps-2024/
[2] https://www.spaceappschallenge.org/nasa-space-apps-2024/2024-local-events/
[3] https://www.spaceappschallenge.org/nasa-space-apps-2024/challenges/
[4] https://www.spaceappschallenge.org/nasa-space-apps-2024/challenges/landsat-reflectance-data-on-the-fly-and-at-your-fingertips/?tab=resources

#opendata #hackathons #space #nasa
В рубрике доступных, но недокументированных открытых данных которые. по хорошему, российское Минэкономразвития должно было бы публиковать на портале открытых данных если бы он был, геоданные инвестиционной карты РФ [1] хотя никак не обозначены и не документированы публично тем не менее доступны через интерфейсы API опенсорс продукта GeoServer который используется внутри этого портала. Разработчики закрыли интерфейс самого геосервера, но закрыть интерфейсы API невозможно без глубокой переделки сайта, поскольку именно с сайта слои автоматически подгружаются. Поэтому и рассказать об этом можно без опасений, API исчезнут только если исчезнет сам портал.

- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.1.1&request=GetCapabilities - WMS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.3.0&request=GetCapabilities - WMS 1.3.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities - WFS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.1.0&request=GetCapabilities - WFS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=2.0.0&request=GetCapabilities - WFS 2.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.0.0&request=GetCapabilities - WCS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.0&request=GetCapabilities - WCS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.1&request=GetCapabilities - WCS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1&request=GetCapabilities - WCS 1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=2.0.1&request=GetCapabilities - WCS 2.0.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WPS&version=1.0.0&request=GetCapabilities - WPS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/tms/1.0.0 - TMS. 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wms?request=GetCapabilities&version=1.1.1&tiled=true - WMTS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wmts?REQUEST=GetCapabilities - WMTS 1.0.0

Этот пример не единственный, в России общедоступных инсталляций GeoServer 12 штук, на сегодняшний день. Это немного, но они есть.

Ссылки:
[1] https://invest.gov.ru

#opendata #russia #datasets #geodata #spatial
В рубрике популярных каталогов данных OpenSDG [1] просто ПО с открытым кодом используемое статистическими службами многих стран для публикации индикаторов устойчивого развития.

Особенность OpenSDG в том что это открытый код [2] профинансированный статслужбами Великобритании и США и разработанный в CODE [3], The Center for Open Data Enterprise.

Из-за простоты и бесплатности его как раз и используют, например, статслужба Армении [4], Конго [5], Великобритании [6] и ещё пара десятков стран и множество городов [7].

OpenSDG нельзя назвать полноценным порталом данных, скорее порталом индикаторов. Причём без стандартизированного API, но со стандартизированной выгрузкой всех индикаторов целиком и некоторым псевдо API для доступа к данным индикаторов.

Ссылки:
[1] https://open-sdg.org
[2] https://github.com/open-sdg/open-sdg
[3] https://www.opendataenterprise.org/
[4] https://sdg.armstat.am
[5] https://odd-dashboard.cd
[6] https://sdgdata.gov.uk
[7] https://open-sdg.org/community

#opendata #datacatalogs #opensdg #statistics
Я, кстати, в очередной раз могу сказать что открытые данные - это, в первую очередь, культура и систематизация работы с данными. Так сложилось что я регулярно работаю с большими базами документов порождённых органами власти. Не с отдельными файлами, а прям с копиями банков документов законов и других НПА. И огромная часть этих НПА - это, безусловно, то что должно быть доступно в виде данных, а не в виде отсканированных PDF документов.

Если бы официальные документы все и всеми публиковались бы с приложениями, хотя бы в виде Excel файлов, то доступных данных было бы гораздо больше.

Например из десятков тысяч документов опубликованных органами власти г. Москвы на оф сайте mos.ru, как минимум несколько тысяч - это очень большие таблицы, в сотни и тысячи страниц опубликованные как сканы. Если бы их публиковали иначе, то то же Правительство Москвы могло бы публиковать не несколько сотен, а несколько тысяч наборов данных, потенциально весьма востребованных к тому же.

Это просто пример, он справедлив к отношении практически всех органов власти, особенно крупных стран и территорий.

А я об этом задумался ещё давно в контексте того что поиск по данным может начинаться как поиск по каталогам данных и индексированием того что уже машиночитаемо, а продолжаться охватывая то что ещё не машиночитаемо, но может стать таковым. Чтобы проиндексировать каталог данных, надо сделать этот каталог данных (с).

#opendata #datasets #laws #datacatalogs
В рубрике больших интересных наборов данных Global Biodiversity Data [1] набор открытых данных по биоразнообразию собранный из нескольких научных работ и опубликованный в каталоге данных Всемирного банка.

Датасет относительно небольшой, около 2.2 ГБ в сжатом виде и содержит георазмеченные сведения по встречаемости различных видов.

О нём в августе писали в блоге Всемирного банка [2] и датасет полезен всем кто хочет изучить животный и растительный мир своей страны. Буквально годится для работы школьников на хакатонах например, но язык только английский.

Ссылки:
[1] https://datacatalog.worldbank.org/search/dataset/0066034/global_biodiversity_data
[2] https://blogs.worldbank.org/en/opendata/a-new-world-bank-database-to-support-a-new-era-in-biodiversity-c

#opendata #datasets #worldbank #biodiversity
В рубрике недокументированных API ещё один пример, реестр НПА Казахстана zan.gov.kz [1]. Хотя на сайте нет документации на это API, но оно существует и все материалы оттуда доступны в машиночитаемой форме.

- https://zan.gov.kz/api/documents/search - пример запроса поиска (требует POST запрос)
- https://zan.gov.kz/api/documents/200655/rus?withHtml=false&page=1&r=1726577683880 - пример запроса получения конкретного документа

Как Вы наверняка уже догадываетесь ни на портале данных Казахстана нет описания этого API и тем более на других ресурсах. Тем временем могу сказать что в одном только Казахстане под сотню недокументированных API, просто потому что разработчикам удобнее делать приложения используя Ajax, динамическую подгрузку контента и тд.

Каталоги API которые делаются в мире - это не такая уж странная штука, это один из способов предоставлять данные разработчикам.

Я завел отдельный тег #undocumentedapi и время от времени буду приводить примеры по разным странам.

Ссылки:
[1] https://zan.gov.kz

#opendata #data #kazakhstan #laws #api #undocumentedapi