Подборка полезных ссылок по данным, технологиям и не только:
- Sparrow [1] движок для извлечения данных из документов и изображений, использует LLM, открытый код под GPL
- Genealogy of Relational Database Management Systems [2] хорошо нарисованная история создания баз данных, полезно для преподавания этой дисциплины. Минус только в том что она 2018 года и последние разработки не охватывает, плюс в том что большая часть фундаментальных трендов охвачена c 70х годов.
- Hamilton [3] ещё один движок с открытым кодом для преобразования данных. Выглядит неплохо, распространяется под BSD лицензией.
- Meaningful metrics: How data sharpened the focus of product teams [4] о том как устроены метрики в Duolingo. Полезное про то как устроены метрики в массовых технологических продуктах, а заодно является ответом на вопросы о том почему Duolingo устроено именно так как оно устроено.
- Bigtable transforms the developer experience with SQL support [5] анонс поддержки SQL в Bigtable. Кажется "а что тут такого?", а как сильно помогает в пользовательском опыте работы с данными там.
Ссылки:
[1] https://github.com/katanaml/sparrow
[2] https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
[3] https://github.com/dagworks-inc/hamilton
[4] https://blog.duolingo.com/growth-model-duolingo/
[5] https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable
#opensource #dataengineering #dataproducts #metrics #readings
- Sparrow [1] движок для извлечения данных из документов и изображений, использует LLM, открытый код под GPL
- Genealogy of Relational Database Management Systems [2] хорошо нарисованная история создания баз данных, полезно для преподавания этой дисциплины. Минус только в том что она 2018 года и последние разработки не охватывает, плюс в том что большая часть фундаментальных трендов охвачена c 70х годов.
- Hamilton [3] ещё один движок с открытым кодом для преобразования данных. Выглядит неплохо, распространяется под BSD лицензией.
- Meaningful metrics: How data sharpened the focus of product teams [4] о том как устроены метрики в Duolingo. Полезное про то как устроены метрики в массовых технологических продуктах, а заодно является ответом на вопросы о том почему Duolingo устроено именно так как оно устроено.
- Bigtable transforms the developer experience with SQL support [5] анонс поддержки SQL в Bigtable. Кажется "а что тут такого?", а как сильно помогает в пользовательском опыте работы с данными там.
Ссылки:
[1] https://github.com/katanaml/sparrow
[2] https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
[3] https://github.com/dagworks-inc/hamilton
[4] https://blog.duolingo.com/growth-model-duolingo/
[5] https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable
#opensource #dataengineering #dataproducts #metrics #readings
GitHub
GitHub - katanaml/sparrow: Data processing with ML, LLM and Vision LLM
Data processing with ML, LLM and Vision LLM. Contribute to katanaml/sparrow development by creating an account on GitHub.
Про уход Notion из России, это, увы, неизбежное и в большинстве уходов хуже всего то по каким критериям большая часть сервисов определяют российскую аффиляцию. Какое-то время назад я переписывался с JetBrains по поводу использования их продукта и задавал им вопросы по поводу использования их продукта не в РФ и может ли компания использовать продукт если кто-то из команды будет иметь доступ к нему из РФ. Ответ был - нет, не может.
То есть даже если компания зарегистрирована в Казахстане или Армении, если даже там работает большая часть команды, в команде есть кто-то кто даже если изредка, но работает из РФ, например, приезжая к родственникам, это может рассматриваться как нарушение условий использования сервиса. Потому что дословно "ни один сотрудник не имеет права использовать продукт из России".
В этом проблема и с Notion, в этом могут быть будущие проблемы с использованием Google Workspace и других популярных сервисов, хостинга и тд, просто по критериям блокировки использования по подключению из сетей аффилированных с РФ.
У практически всех популярных онлайн сервисов много альтернатив, лично я надеюсь что больше развития получат open source продукты по модели local-first.
#tools #sanctions #opensource
То есть даже если компания зарегистрирована в Казахстане или Армении, если даже там работает большая часть команды, в команде есть кто-то кто даже если изредка, но работает из РФ, например, приезжая к родственникам, это может рассматриваться как нарушение условий использования сервиса. Потому что дословно "ни один сотрудник не имеет права использовать продукт из России".
В этом проблема и с Notion, в этом могут быть будущие проблемы с использованием Google Workspace и других популярных сервисов, хостинга и тд, просто по критериям блокировки использования по подключению из сетей аффилированных с РФ.
У практически всех популярных онлайн сервисов много альтернатив, лично я надеюсь что больше развития получат open source продукты по модели local-first.
#tools #sanctions #opensource
Forwarded from Open Data Armenia
[RU] Больше открытых данных об Армении. На сайте Всемирного метеорологического агентства World Weather Information Service [1] публикуются данные прогноза погоды по 3467 городам мира [2] включая станции мониторинга прогноза погоды по Армении.
Данные доступны в виде страниц городов и могут быть выгружены с сайта в машиночитаемых форматах:
- Ереван https://worldweather.wmo.int/en/json/66_en.json
- Севан https://worldweather.wmo.int/en/json/68_en.json
- Капан https://worldweather.wmo.int/en/json/69_en.json
- Ванадзор https://worldweather.wmo.int/en/json/67_en.json
- Дилижан https://worldweather.wmo.int/en/json/2079_en.json
- Джермук https://worldweather.wmo.int/en/json/2080_en.json
Полный список городов включает идентификаторы [2] по которым можно получить данные используя документацию API на сайте [3].
[EN] More open data about Armenia. The World Weather Information Service [1] website of the World Meteorological Agency [1] publishes weather forecast data for 3467 cities of the world [2] including weather forecast monitoring stations for Armenia.
The data are available as city pages and can be downloaded from the site in machine-readable formats:
- Yerevan https://worldweather.wmo.int/en/json/66_en.json
- Sevan https://worldweather.wmo.int/en/json/68_en.json
- Kapan https://worldweather.wmo.int/en/json/69_en.json
- Vanadzor https://worldweather.wmo.int/en/json/67_en.json
- Dilijan https://worldweather.wmo.int/en/json/2079_en.json
- Jermuk https://worldweather.wmo.int/en/json/2080_en.json
The full list of cities includes identifiers [2] for which data can be retrieved using the API documentation on the website [3].
Links:
[1] https://worldweather.wmo.int
[2] https://worldweather.wmo.int/en/json/full_city_list.txt
[3] https://worldweather.wmo.int/en/dataguide.html
#opendata #armenia #climate #meteorology
Данные доступны в виде страниц городов и могут быть выгружены с сайта в машиночитаемых форматах:
- Ереван https://worldweather.wmo.int/en/json/66_en.json
- Севан https://worldweather.wmo.int/en/json/68_en.json
- Капан https://worldweather.wmo.int/en/json/69_en.json
- Ванадзор https://worldweather.wmo.int/en/json/67_en.json
- Дилижан https://worldweather.wmo.int/en/json/2079_en.json
- Джермук https://worldweather.wmo.int/en/json/2080_en.json
Полный список городов включает идентификаторы [2] по которым можно получить данные используя документацию API на сайте [3].
[EN] More open data about Armenia. The World Weather Information Service [1] website of the World Meteorological Agency [1] publishes weather forecast data for 3467 cities of the world [2] including weather forecast monitoring stations for Armenia.
The data are available as city pages and can be downloaded from the site in machine-readable formats:
- Yerevan https://worldweather.wmo.int/en/json/66_en.json
- Sevan https://worldweather.wmo.int/en/json/68_en.json
- Kapan https://worldweather.wmo.int/en/json/69_en.json
- Vanadzor https://worldweather.wmo.int/en/json/67_en.json
- Dilijan https://worldweather.wmo.int/en/json/2079_en.json
- Jermuk https://worldweather.wmo.int/en/json/2080_en.json
The full list of cities includes identifiers [2] for which data can be retrieved using the API documentation on the website [3].
Links:
[1] https://worldweather.wmo.int
[2] https://worldweather.wmo.int/en/json/full_city_list.txt
[3] https://worldweather.wmo.int/en/dataguide.html
#opendata #armenia #climate #meteorology
К вопросу о наличии данных о странах, есть два взгляда на это. Первый есть ли вообще какие-то данные о стране в структурированном или неструктурированном виде, не обязательно из источников внутри страны. И второй в том есть ли структурированные источники данных внутри страны. В Dateno идёт агрегация структурированных источников и данные по странам, находятся, или в глобальных агрегаторах вроде индикаторов Всемирного банка, BIS, WHO и других, либо из самих стран, либо, реже, из глобальных и региональных систем раскрытия научных или статистических данных.
И сейчас есть 24 страны по которым нет источников структурированных данных внутри страны. Фактически, ни одного каталога данных: открытые данные, геопорталы, индикаторы, ничего нет.
Страны можно разделить на 3 типа:
- совсем небольшие развитые: Монако, Сан Марино. Их данные агрегируются странами их окружающими
- страны в длительном политическом / экономическом кризисе
- совсем бедные страны
По последним двум группам минимальные инфраструктурные данные есть на Humanitarian Data Exchange [1].
А про развитые страны где тоже маловато данных я ранее писал. Но мало, не значит нет.
В любом случае в Dateno есть уже полное покрытие всех стран именно за счёт данных из глобальных агрегаторов.
Ссылки:
[1] https://data.humdata.org
#opendata #nodata #datacatalogs
И сейчас есть 24 страны по которым нет источников структурированных данных внутри страны. Фактически, ни одного каталога данных: открытые данные, геопорталы, индикаторы, ничего нет.
Страны можно разделить на 3 типа:
- совсем небольшие развитые: Монако, Сан Марино. Их данные агрегируются странами их окружающими
- страны в длительном политическом / экономическом кризисе
- совсем бедные страны
По последним двум группам минимальные инфраструктурные данные есть на Humanitarian Data Exchange [1].
А про развитые страны где тоже маловато данных я ранее писал. Но мало, не значит нет.
В любом случае в Dateno есть уже полное покрытие всех стран именно за счёт данных из глобальных агрегаторов.
┏━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┓
┃ Alpha-2 ┃ Name ┃ Internet TLD ┃
┡━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━┩
│ NE │ Niger (the) │ .ne │
│ TM │ Turkmenistan │ .tm │
│ AF │ Afghanistan │ .af │
│ SD │ Sudan (the) │ .sd │
│ SL │ Sierra Leone │ .sl │
│ KN │ Saint Kitts and Nevis │ .kn │
│ ER │ Eritrea │ .er │
│ KM │ Comoros (the) │ .km │
│ SM │ San Marino │ .sm │
│ SY │ Syrian Arab Republic (the) │ .sy │
│ CF │ Central African Republic (the) │ .cf │
│ GQ │ Equatorial Guinea │ .gq │
│ GA │ Gabon │ .ga │
│ GW │ Guinea-Bissau │ .gw │
│ VC │ Saint Vincent and the Grenadines │ .vc │
│ GN │ Guinea │ .gn │
│ SZ │ Eswatini │ .sz │
│ TD │ Chad │ .td │
│ GD │ Grenada │ .gd │
│ MC │ Monaco │ .mc │
│ KP │ Korea (the Democratic People's Republic of) │ .kp │
│ ST │ Sao Tome and Principe │ .st │
│ DJ │ Djibouti │ .dj │
│ TL │ Timor-Leste │ .tl │
├─────────┼────────────────────────────────────────────────┼──────────────┤
│ Total │ 24 │ │
└─────────┴────────────────────────────────────────────────┴──────────────┘
Ссылки:
[1] https://data.humdata.org
#opendata #nodata #datacatalogs
Полезные ссылки про данные, технологии и не только:
- Classifying all of the pdfs on the internet [1] автор проанализировал 8TB PDF файлов собранных через Common Crawl и использовал Llama-3-70B для их классификации.
- Loss Rider [2] библиотека для визуализации Line Rider диаграм. Наглядный импакт!
- quarto-live [3] расширение для Quarto добавляющее интерактивности для R и Python примеров. Хорошо подойдёт для любых онлайн учебных курсов.
- A Gentle Introduction to GDAL Part 8: Reading Scientific Data Formats [4] лонгрид про обработку научных геоданных HDF и NetCDF с помощью GDAL. Выглядит полезным
- LOTUS [5] движок для запросов к запросов к Pandas с LLM
Ссылки:
[1] https://snats.xyz/pages/articles/classifying_a_bunch_of_pdfs.html
[2] https://github.com/jndean/LossRider
[3] https://r-wasm.github.io/quarto-live/
[4] https://medium.com/@robsimmon/a-gentle-introduction-to-gdal-part-8-reading-scientific-data-formats-1a1f70d5388c
[5] https://github.com/stanford-futuredata/lotus
#opensource #readings #llm #ai
- Classifying all of the pdfs on the internet [1] автор проанализировал 8TB PDF файлов собранных через Common Crawl и использовал Llama-3-70B для их классификации.
- Loss Rider [2] библиотека для визуализации Line Rider диаграм. Наглядный импакт!
- quarto-live [3] расширение для Quarto добавляющее интерактивности для R и Python примеров. Хорошо подойдёт для любых онлайн учебных курсов.
- A Gentle Introduction to GDAL Part 8: Reading Scientific Data Formats [4] лонгрид про обработку научных геоданных HDF и NetCDF с помощью GDAL. Выглядит полезным
- LOTUS [5] движок для запросов к запросов к Pandas с LLM
Ссылки:
[1] https://snats.xyz/pages/articles/classifying_a_bunch_of_pdfs.html
[2] https://github.com/jndean/LossRider
[3] https://r-wasm.github.io/quarto-live/
[4] https://medium.com/@robsimmon/a-gentle-introduction-to-gdal-part-8-reading-scientific-data-formats-1a1f70d5388c
[5] https://github.com/stanford-futuredata/lotus
#opensource #readings #llm #ai
Городские дашборды Гонконга [1] из плюсов выглядят довольно неплохо, из минусов данные не обновляли с февраля 2024 г. Интегрированы с национальным порталом открытых данных [2] где много разных данных и API.
В восточной и юго-восточной азии, в принципе, популярны городские и страновые дашборды, но всё время остаётся ощущение что они какой-то эксперимент.
Ссылки:
[1] https://dashboard.data.gov.hk/city-at-a-glance
[2] https://data.gov.hk/tc/
#opendata #data #hongkong #dashboards #dataviz
В восточной и юго-восточной азии, в принципе, популярны городские и страновые дашборды, но всё время остаётся ощущение что они какой-то эксперимент.
Ссылки:
[1] https://dashboard.data.gov.hk/city-at-a-glance
[2] https://data.gov.hk/tc/
#opendata #data #hongkong #dashboards #dataviz
Одна из стран по которой пока в Dateno мало датасетов, всего 58 тысяч, это Индия. 58 тысяч датасетов на страну в более чем 1 млрд человек это очень мало хотя объективно причины и понятны.
В Dateno сейчас 46 каталогов данных связанных с Индией [1], они сейчас обновляются и не все доступны и не все включены.
Итак что с открытыми данными в Индии:
1. В Индии сильная централизация данных на национальном портале data.gov.in Это самописный продукт где заявляется 500+ тысяч дата ресурсов. У его создателей свое восприятие мира и по факту, эти 500+ тысяч ресурсов - это файлы, а то что принято в мире называть датасетами они называют каталогами. Их всего 12.6+ тысяч. Примерно по 40 файлов на один каталог. Поэтому, с одной стороны индийский портал данных кажется огромным, а с другой, совсем нет. Это всего +12.6 тысяч наборов данных для поискового индекса. А это уже не так много и не так масштабно. Что ещё показательно на нац портале не указываются объёмы хранимых данных, а это один из верных признаков что физического объёма там немного. В любом случае стандартизированного API там нет, надо делать парсер их API/веб страниц
2. Индия страна большая, но сравнительно небогатая. Не у всех регионов есть свои информационные системы, геопорталы и тд. Они постепенно появляются, но в общем то есть не у каждого штата.
3. Официальная статистика тоже не отдаётся стандартизированными интерфейсами, а отдельный портал открытых данных [2] и ещё несколько публичных ресурсов о которых я ранее писал.
В принципе же Индию я лично отношу пока к категории стран со своей большей спецификой в работе с данными. Сейчас это: Китай, Россия, Индия.
У меня пока ключевой вопрос в том как измерять качество покрытия поиска Dateno по странам. В пропорции к населению, к ВВП, индексу развития цифровой инфраструктуры (ООН), индексу демократизации или ещё чему-то? Или всем сразу?
При этом понятно что это, одновременно, оценка, и качество наполнения реестра и поискового индекса Dateno, и развитости культуры работы с данными в стране.
Можно свой индекс "забабахать" World data discovery index;)
Ссылки:
[1] https://dateno.io/registry/country/IN
[2] https://esankhyiki.mospi.gov.in
#opendata #india #datasets #datacatalogs
В Dateno сейчас 46 каталогов данных связанных с Индией [1], они сейчас обновляются и не все доступны и не все включены.
Итак что с открытыми данными в Индии:
1. В Индии сильная централизация данных на национальном портале data.gov.in Это самописный продукт где заявляется 500+ тысяч дата ресурсов. У его создателей свое восприятие мира и по факту, эти 500+ тысяч ресурсов - это файлы, а то что принято в мире называть датасетами они называют каталогами. Их всего 12.6+ тысяч. Примерно по 40 файлов на один каталог. Поэтому, с одной стороны индийский портал данных кажется огромным, а с другой, совсем нет. Это всего +12.6 тысяч наборов данных для поискового индекса. А это уже не так много и не так масштабно. Что ещё показательно на нац портале не указываются объёмы хранимых данных, а это один из верных признаков что физического объёма там немного. В любом случае стандартизированного API там нет, надо делать парсер их API/веб страниц
2. Индия страна большая, но сравнительно небогатая. Не у всех регионов есть свои информационные системы, геопорталы и тд. Они постепенно появляются, но в общем то есть не у каждого штата.
3. Официальная статистика тоже не отдаётся стандартизированными интерфейсами, а отдельный портал открытых данных [2] и ещё несколько публичных ресурсов о которых я ранее писал.
В принципе же Индию я лично отношу пока к категории стран со своей большей спецификой в работе с данными. Сейчас это: Китай, Россия, Индия.
У меня пока ключевой вопрос в том как измерять качество покрытия поиска Dateno по странам. В пропорции к населению, к ВВП, индексу развития цифровой инфраструктуры (ООН), индексу демократизации или ещё чему-то? Или всем сразу?
При этом понятно что это, одновременно, оценка, и качество наполнения реестра и поискового индекса Dateno, и развитости культуры работы с данными в стране.
Можно свой индекс "забабахать" World data discovery index;)
Ссылки:
[1] https://dateno.io/registry/country/IN
[2] https://esankhyiki.mospi.gov.in
#opendata #india #datasets #datacatalogs
Вдогонку к тексту про недокументированные API, маленький лайфхак о котором мало кто знает. У сервисов ArcGIS проверка доступа к ним зависит от вида запрашиваемого контента, для одних и тех же данных. Если обратится по ссылке к HTML представлению то может быть ошибка 403, а если к JSON то всё возвращается.
На скриншотах сервер с данными ArcGIS в Индии. Его можно открыть по ссылке. Он выдаст 403 ошибку, потом добавляем ?f=json и получаем ответ в формате JSON. Что важно, даже несмотря на то что администратор ограничил просмотр директорий с сервисами.
Это уже чуть-чуть ближе к инфобезу, но серьёзные данные и так не выставляют в ArcGIS в открытый доступ, а краулеры вообще не знают что там администратор ограничил. JSON доступен и парсится? Вот и славно.
#opendata #undocumentedapi #datasets #arcgis #geodata
На скриншотах сервер с данными ArcGIS в Индии. Его можно открыть по ссылке. Он выдаст 403 ошибку, потом добавляем ?f=json и получаем ответ в формате JSON. Что важно, даже несмотря на то что администратор ограничил просмотр директорий с сервисами.
Это уже чуть-чуть ближе к инфобезу, но серьёзные данные и так не выставляют в ArcGIS в открытый доступ, а краулеры вообще не знают что там администратор ограничил. JSON доступен и парсится? Вот и славно.
#opendata #undocumentedapi #datasets #arcgis #geodata
Читаю научную статью Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web [1] от команды Google Datasets из которой немного больше понятно о том как устроен их Google Dataset Search и не могу не отметить насколько неглубоко они погружаются в тематику того чем занимаются и с насколько небольшими датасетами метаданных работают. В этом случае они работали с датасетом с метаданными о 2.7 миллионов наборах данных.
Но сама проблема которую они поднимают актуальна. К данным не работают индексы цитирования, а взаимосвязи между ними не всегда можно установить простым образом если авторы сами не указали.
Но, почему я лично считаю их статью неглубокой:
1. Кроме базовых стандартов вроде DCAT, Schema.org и других есть куда больше более сложных стандартов публикации данных, особенно научных, где эти взаимоотношения прописаны куда чётче.
2. Взаимоотношения датасетов, по хорошему, это предмет онтологического моделирования и дополнения/расширения/адаптации DCAT
3. Более сложная эвристика не только и не столько в анализе названий, как это делают авторы, а в общих схеме/структуре данных между датасетами, пересечение по содержанию и тд.
Правда работ в этой области не так много, но от ребят из Гугла я ждал большего.
Когда у меня только начинались мысли про Dateno изначально желание было с запустить процесс постоянного обогащения метаданных чтобы сделать поиск насыщеннее: больше фильтров, лучше связи между данными, больше понимания их содержимого и тд. Но, случайно, получилось собрать быстро много датасетов и по прежнему не покидает ощущение что их слишком мало. Данных всегда мало!😜
Но о том что можно выдавать пользователю инфу про схожие датасеты мысли были и есть. Можно использовать тут сложную эвристику или функции а ля ИИ заложенные в поисковый движок, а можно большее знание о самих данных и простые выборки на основе этого.
Ссылки:
[1] https://www.semanticscholar.org/paper/Relationships-are-Complicated%21-An-Analysis-of-on-Lin-Alrashed/97e3cfd5a6cf88f2b1887c5fefc76b528e92f23b
#opendata #datasets #google #dateno #readings
Но сама проблема которую они поднимают актуальна. К данным не работают индексы цитирования, а взаимосвязи между ними не всегда можно установить простым образом если авторы сами не указали.
Но, почему я лично считаю их статью неглубокой:
1. Кроме базовых стандартов вроде DCAT, Schema.org и других есть куда больше более сложных стандартов публикации данных, особенно научных, где эти взаимоотношения прописаны куда чётче.
2. Взаимоотношения датасетов, по хорошему, это предмет онтологического моделирования и дополнения/расширения/адаптации DCAT
3. Более сложная эвристика не только и не столько в анализе названий, как это делают авторы, а в общих схеме/структуре данных между датасетами, пересечение по содержанию и тд.
Правда работ в этой области не так много, но от ребят из Гугла я ждал большего.
Когда у меня только начинались мысли про Dateno изначально желание было с запустить процесс постоянного обогащения метаданных чтобы сделать поиск насыщеннее: больше фильтров, лучше связи между данными, больше понимания их содержимого и тд. Но, случайно, получилось собрать быстро много датасетов и по прежнему не покидает ощущение что их слишком мало. Данных всегда мало!
Но о том что можно выдавать пользователю инфу про схожие датасеты мысли были и есть. Можно использовать тут сложную эвристику или функции а ля ИИ заложенные в поисковый движок, а можно большее знание о самих данных и простые выборки на основе этого.
Ссылки:
[1] https://www.semanticscholar.org/paper/Relationships-are-Complicated%21-An-Analysis-of-on-Lin-Alrashed/97e3cfd5a6cf88f2b1887c5fefc76b528e92f23b
#opendata #datasets #google #dateno #readings
Please open Telegram to view this post
VIEW IN TELEGRAM
www.semanticscholar.org
[PDF] Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web | Semantic Scholar
This paper presents a comprehensive taxonomy of relationships between datasets on the Web and map these relationships to user tasks performed during dataset discovery and demonstrates that machine-learning based methods that use dataset metadata achieve multi…
Я тут тоже думал про всякое применение ИИ, как в продуктовых и рабочих делах, так и общечеловеческих. Рабочие дела - это как применять ИИ для обработки, классификации, повышения качества, поиска, обогащения и тд. в работе с данными. Применений много, о них как-то в другой раз и скорее уже когда будет что показать и рассказать живое.
А вот про рабочее и полезное человечеству.
1. Не теряю всё же надежду что хоть кто-то из разработчиков сделает умный Inbox, AI ассистента нормально работающего с почтой, контактами и документами в рамках корпоративных и личных коммуникаций. Для людей живущих асинхронной жизнью это просто необходимо. Я вот не хочу сортировать почту по папкам, довылавливать спам, дозаполнять контакты после внесения, вспоминать треды переписки и так далее. Это всё совершенно точно поддаётся качественной даже не автоматизации, а глубокой трансформации без потери качества.
2. Есть огромное число малых/не национальных языков, никак не защищаемых государствами или защищаемых незначительно. Какие-то из них стагнируют, некоторые развиваются, большая часть медленно или быстро вымирает. Если по ним есть хоть какая-то устная и письменная история то AI для сохранения и обучения вымирающих языков. Не только как предмет анализа, исследований и научных работ, а по автоматизированному созданию автопереводчиков, словарей, обучающих материалов и так далее. Коммерческой идеи тут, может не быть. Подчеркну что идея тут не в автоматизации перевода, а в автоматизации создания обучающих материалов.
#ai #thoughts
А вот про рабочее и полезное человечеству.
1. Не теряю всё же надежду что хоть кто-то из разработчиков сделает умный Inbox, AI ассистента нормально работающего с почтой, контактами и документами в рамках корпоративных и личных коммуникаций. Для людей живущих асинхронной жизнью это просто необходимо. Я вот не хочу сортировать почту по папкам, довылавливать спам, дозаполнять контакты после внесения, вспоминать треды переписки и так далее. Это всё совершенно точно поддаётся качественной даже не автоматизации, а глубокой трансформации без потери качества.
2. Есть огромное число малых/не национальных языков, никак не защищаемых государствами или защищаемых незначительно. Какие-то из них стагнируют, некоторые развиваются, большая часть медленно или быстро вымирает. Если по ним есть хоть какая-то устная и письменная история то AI для сохранения и обучения вымирающих языков. Не только как предмет анализа, исследований и научных работ, а по автоматизированному созданию автопереводчиков, словарей, обучающих материалов и так далее. Коммерческой идеи тут, может не быть. Подчеркну что идея тут не в автоматизации перевода, а в автоматизации создания обучающих материалов.
#ai #thoughts
Ещё один полезный/любопытный инструмент ChartDB по проектированию баз данных [1]. Умеет быстро делать структуру из нескольких SQL СУБД, выглядит простым и удобным. Открытый код AGPL-3.0 [2].
Ссылки:
[1] https://chartdb.io
[2] https://github.com/chartdb/chartdb
#opensource #tools #databases
Ссылки:
[1] https://chartdb.io
[2] https://github.com/chartdb/chartdb
#opensource #tools #databases
Elasticsearch снова open source, они добавили лицензию AGPL 3.0 к SSPL [1]. Хочется немного позлорадствовать, а стоило ли им идти тем путём что они пошли, но реально это хороший продукт и все эти события добавили ему конкуренции, а конкуренция тоже хорошо.
P.S. Но для поиска Meilisearch лучше [2] и лицензия там MIT.
Ссылки:
[1] https://www.elastic.co/blog/elasticsearch-is-open-source-again
[2] https://github.com/meilisearch/meilisearch
#opensource #elastic #search
P.S. Но для поиска Meilisearch лучше [2] и лицензия там MIT.
Ссылки:
[1] https://www.elastic.co/blog/elasticsearch-is-open-source-again
[2] https://github.com/meilisearch/meilisearch
#opensource #elastic #search
Elastic Blog
Elasticsearch Is Open Source. Again!
Elastic announces the return of open source licensing for Elasticsearch and Kibana, adding AGPL as an option alongside existing licenses. This change reinforces our long-standing commitment to open source principles and the open source community.
Кстати, я пропустил точный момент когда это произошло, но явно не так давно. OpenCorporates, проект по сбору и предоставлению открытых данных о компаниях более не открытые данные [1]. Где-то в 2023 году, скорее всего в августе, но может и чуть раньше.
В этом смысле во всём что касается открытых данных есть давняя не нерешённая проблема про отсутствие устойчивых механизмов существования у open data проектов претендующих на создание качественных данных.
Из всех известных мне проектов только OSM и Wikidata имеют более менее устойчивую модель жизни. И то, Wikidata не претендует на полноту, а OSM находится под нарастающим давлением бигтехов.
Для сравнения, в случае открытого исходного кода ситуация лучше. Моделей существования устойчивых сообществ создающих open source продукт много:
- open source по умолчанию, коммерческий сервис в облаке
- заработок на услугах поддержки ПО
- работа изнутри бигтехов
и тд. не все варианты простые, но они хотя бы есть.
А в случае открытых данных, развилка в в одном из или:
- постоянное грантовое
- госфинансирование
- финансирование как часть научной инфраструктуры (госфинасирование и частное грантовое)
или не открытые данные. Я это наблюдаю не только в случае Open Corporates, но и в проектах Open Sanctions, AIDA и многих других. У всех их создателей есть дилемма. Или делаешь полностью открытое и получаешь поддержку сообщества, но в любой момент финансирование прекращается и проект стухает. Или не делаешь полноценно открытый проект и сообщество или игнорирует его или воспринимает с агрессией.
Гибридные на данных проекты делать сложно, если они удаются, то быстро уходят в коммерческий рынок данных, теряя полностью атрибуты открытости.
Ссылки:
[1] https://github.com/orgs/datasets/discussions/386
#opendata #opensource #business #dataproducts
В этом смысле во всём что касается открытых данных есть давняя не нерешённая проблема про отсутствие устойчивых механизмов существования у open data проектов претендующих на создание качественных данных.
Из всех известных мне проектов только OSM и Wikidata имеют более менее устойчивую модель жизни. И то, Wikidata не претендует на полноту, а OSM находится под нарастающим давлением бигтехов.
Для сравнения, в случае открытого исходного кода ситуация лучше. Моделей существования устойчивых сообществ создающих open source продукт много:
- open source по умолчанию, коммерческий сервис в облаке
- заработок на услугах поддержки ПО
- работа изнутри бигтехов
и тд. не все варианты простые, но они хотя бы есть.
А в случае открытых данных, развилка в в одном из или:
- постоянное грантовое
- госфинансирование
- финансирование как часть научной инфраструктуры (госфинасирование и частное грантовое)
или не открытые данные. Я это наблюдаю не только в случае Open Corporates, но и в проектах Open Sanctions, AIDA и многих других. У всех их создателей есть дилемма. Или делаешь полностью открытое и получаешь поддержку сообщества, но в любой момент финансирование прекращается и проект стухает. Или не делаешь полноценно открытый проект и сообщество или игнорирует его или воспринимает с агрессией.
Гибридные на данных проекты делать сложно, если они удаются, то быстро уходят в коммерческий рынок данных, теряя полностью атрибуты открытости.
Ссылки:
[1] https://github.com/orgs/datasets/discussions/386
#opendata #opensource #business #dataproducts
TF05_ST_06_Advocating_an_Inter66cf6ad8f1a90.pdf
688.5 KB
Для тех кто интересуется международной повесткой регулирования данных International Decade for Data (2025-2035) under G20 sponsorship [1] доклад одной из рабочих группы при G20 с предложением по продвижению десятилетия данных под эгидой G20 и основных направлениях.
Удивительно что там ни слова об открытых данных, но много про управление данными в международном аспекте.
Ссылки:
[1] https://www.t20brasil.org/media/documentos/arquivos/TF05_ST_06_Advocating_an_Inter66cf6ad8f1a90.pdf
#opendata #data #policy #readings
Удивительно что там ни слова об открытых данных, но много про управление данными в международном аспекте.
Ссылки:
[1] https://www.t20brasil.org/media/documentos/arquivos/TF05_ST_06_Advocating_an_Inter66cf6ad8f1a90.pdf
#opendata #data #policy #readings
Open data in Scotland: a blueprint for unlocking innovation, collaboration and impact [1] ещё один любопытный документ про открытые данные в Шотландии.
Видимо чтобы подтолкнуть правительство Шотландии создать портал открытых данных региона. При этом надо сказать что в реестре Dateno [2] Шотландии есть 29 каталогов данных и в самом Dateno проиндексировано 7500+ датасетов из Шотландии. Скорее всего данных там реально больше.
Надо, кстати, как-нибудь доработать реестр и отображать каталоги данных на субрегиональном уровне, добавить мониторинг доступности, перевести ведение реестра из формата сборки в формат СУБД.
Но это скорее задачи для бэклога.
Сейчас чтобы работать с реестром каталогов данных Dateno можно просто скачать файл full.jsonl [3] из репозитория и выполнить команду
Очень и очень просто. А сам реестр постоянно пополняется.
Ссылки:
[1] https://www.gov.scot/publications/open-data-scotland-blueprint-unlocking-innovation-collaboration-impact/
[2] https://dateno.io/registry
[3] https://github.com/commondataio/dataportals-registry/tree/main/data/datasets
#opendata #datasets #scotland #dateno
Видимо чтобы подтолкнуть правительство Шотландии создать портал открытых данных региона. При этом надо сказать что в реестре Dateno [2] Шотландии есть 29 каталогов данных и в самом Dateno проиндексировано 7500+ датасетов из Шотландии. Скорее всего данных там реально больше.
Надо, кстати, как-нибудь доработать реестр и отображать каталоги данных на субрегиональном уровне, добавить мониторинг доступности, перевести ведение реестра из формата сборки в формат СУБД.
Но это скорее задачи для бэклога.
Сейчас чтобы работать с реестром каталогов данных Dateno можно просто скачать файл full.jsonl [3] из репозитория и выполнить команду
select uid, catalog_type, software.id, link from (select *, unnest(owner.location.subregion) from 'full.jsonl') where id_1 = 'GB-SCT';
Очень и очень просто. А сам реестр постоянно пополняется.
Ссылки:
[1] https://www.gov.scot/publications/open-data-scotland-blueprint-unlocking-innovation-collaboration-impact/
[2] https://dateno.io/registry
[3] https://github.com/commondataio/dataportals-registry/tree/main/data/datasets
#opendata #datasets #scotland #dateno