Ivan Begtin
7.98K subscribers
1.85K photos
3 videos
101 files
4.56K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
В рубрике как это устроено у них публикация данных Международным валютным фондом (IMF). IMF - это значимое финансовое агентство при ООН , отвечающее как за международную финансовую помощь, так и за сбор данных о международных финансах. Значительная часть данных публикуется на основном сайте IMF (www.imf.org) [1], но, также, агентство использует несколько систем раскрытия данных.

- IMF Data [2] основной портал данных IMF с десятками датасетов для массовой выгрузки, сотнями показателей и возможностью доступа к данным индикаторов через SDMX API [3]. В основном все данные связанные с макропоказателями стран.
- Dissemination Standards Bulletin Board (DSBB) [4] портал для сбора и публикации данных в соответствии с разработанными стандартами Расширенной общей системы распространения данных. Эти данные собираются с официальных сайтов стран, как правило страниц на сайте ЦБ, опубликованных по определенным требованиям.
- Portwatch. Monitoring Trade Disruptions from Space [5] совместный проект IMF и Оксфордского университета по мониторингу портов с помощью спутников для идентификации и предупреждения событий которые могут помешать международной торговле. Предоставляет ленту событий, результаты мониторинга и другие данные. Все данные можно скачать, внутри сайта платформа ArcGIS Hub позволяющая массовую выгрузку данных
- Climate Change Indicators Dashboard [6] портал с индикаторами изменений климата по странам. Также на платформе ArcGIS Hub, и также все данные доступны для выгрузки.

Общие наблюдения по изменению в подходе к публикации данных IMF те что и для большей части структур ООН:
- переход к публикации открытых данных по умолчанию
- доступность данных одновременно для массовой выгрузки (bulk), API и в виде веб интерфейсов визуализации
- параллельное использование порталов раскрытия разработанных на заказ и типовых продуктов, в данном случае ArcGIS Hub


Ссылки:
[1] https://www.imf.org
[2] https://data.imf.org
[3] https://datahelp.imf.org/knowledgebase/articles/630877-api
[4] https://dsbb.imf.org/
[5] https://portwatch.imf.org/
[6] https://climatedata.imf.org/

#opendata #datasets #dataportals #statistics #finances #economics
Хороший пример дата журналистики / аналитики, заметка CrowdStrike's Impact on Aviation [1]. Автор проанализировал данный показаний датчиков ADS-B для отслеживания самолётов и замерил реальные последствия падения антивируса CrowdStrike для авиации.

Итоги впечатляющие, анализ полезный для всех тех кто вломит CrowdStrike иски. Хочется надеятся что их разорят каким-нибудь особо болезненным способом чтобы такого больше никогда не повторилось (кровожадно).

Там же в статье ещё несколько инсайтов по тому как работают авиакомпании в США, речь тут о них в первую очередь.

Ссылки:
[1] https://heavymeta.org/2024/07/28/crowdstrikes-impact-on-aviation.html

#aviation #data #datajournalism #opendata #adsb #datanalysis
В рубрике больших каталогов геоданных - портал ArcGIS и поиск на нём [1] на онлайн сервисе компании Esri .

Ещё до появления хаба открытых данных Esri [2] который используют многочисленные муниципалитеты для публикации геоданных и данных, у Esri был и остаётся сервис поиска по георесурсам которые создавали пользовали их облачной платформы и далее делали их общедоступными.

Эти ресурсы включают: слои карт, карты, сцены, приложения, файлы и дата истории. По большей части, конечно, слои карт и файлы.

Точные объёмы измерить сложно, но вряд ли это меньше чем сотни тысяч гео ресурсов.

Главный минус - ограниченные метаданные ассоциированные с этими ресурсами.

Главный плюс - возможность найти геоданные по странам где собственные геоданные почти не существуют онлайн.

Ссылки:
[1] https://www.arcgis.com/home/search.html
[2] https://hub.arcgis.com

#opendata #arcgis #datasets #geodata #maps
В рубрике как это устроено у них Национальная служба сельскохозяйственной статистики США (NASS) [1] собирает и раскрывает данные по сельскохозяйственным территориям, урожаю, демографии, экономике и иным предметам статистического наблюдения по всей территории США с детализацией до отдельных графств, аналог муниципалитетов.

Все данные доступны, как классическим образом, в форме таблиц и построителя запросов, так и с возможностью получить базу статистики сразу и целиком в виде нескольких файлов общим объёмом в 3GB в сжатом виде, актуализируемых ежесуточно.

А также доступ организован через API системы Quick Stats где нужные данные можно получить быстро и в формате JSON. [3]

Дополнительно эти данные распространяются в виде геопространственных данных через несколько картографических сервисов [4]

Ссылки:
[1] https://www.nass.usda.gov
[2] https://www.nass.usda.gov/datasets/
[3] https://quickstats.nass.usda.gov/api
[4] https://croplandcros.scinet.usda.gov/

#opendata #usa #statistics #agriculture #datasets
В рубрике как это устроено у них TERN Data Discovery Portal [1] в Австралии, портал открытых исследовательских данных созданный в рамках проекта Terrestrial Ecosystem Research Network на базе Университета Квинсленда и поддерживаемый в рамках National Collaborative Research Infrastructure Strategy.

На портале не так много данных как на других государственных порталах данных страны, всего 2724 набора данных, но важное его отличие - это проработка профиля метаданных, высокое качество описания всех датасетов и их доступность в специальных научных форматах. Так на портале присутствует 13 фильтров для фасетного поиска, фасетный поиск вообще хорошо годится для поиска по данным и тут он неплох. А также все датасеты публикуются по спецификации Research Object Crate (RO-Crate) [2], похожей на стандарт Frictionless Data, но используемый для научных данных.

Ссылки:
[1] https://portal.tern.org.au
[2] https://www.researchobject.org/ro-crate/

#opendata #data #earthsciences #datacatalogs #australia #tern #geodata
Кстати, если вы ещё не видели, мы обновили главную страницу Dateno [1] и выглядит всё лучше и лучше, а заодно можно сразу увидеть того сколько датасетов есть по разным макрорегионам.

Можно увидеть насколько много данных по развитым регионам и насколько их мало, к примеру, по Африке.

Правда у этих цифр есть объективная причина.Она в том что да, в развитых странах гораздо больше данных из-за лучшей цифровизации, культуры открытости, культуры работы с данными и тд. Данных очень много и всё больше гиперлокальных, муниципальных данных

Поэтому данных по Африке так мало, даже когда мы продолжим георазметку датасетов, всё равно их будет сильно меньше чем где-то ещё и большая часть этих данных будет создана в США и Европейских странах.

А вот то что мало данных по Азии, у этого есть объективные причины необходимости индексирования данных по Китаю, где свой уникальный софт, свои каталоги данных и тд. Если даже только основные репозитории проиндексировать там будет несколько миллионов наборов данных, но все на китайском языке😂

Ссылки:
[1] https://dateno.io

#opendata #dateno #datasets #datasearch #search
Please open Telegram to view this post
VIEW IN TELEGRAM
Наконец то я дописал лонгрид про официальную статистику как дата продукт, частично пересекаясь с ранее написанным текстом про то как хорошо публиковать статистику. Вот тут текст https://begtin.substack.com/p/694

Пока писал не покидало ощущение что это же всё очевидно как-то, но... очевидно-неочевидно, а далеко не везде встречается.

#statistics #opendata #data
Свежий полезный ресурс про открытые данные о том как открытые данные пересекаются с генеративным ИИ, Observatory of Examples of How Open Data and Generative AI Intersect [1]

Много примеров применения ИИ в разных сферах, обученных на общедоступных и открытых данных. Например, меня заинтересовали исследования по применению ИИ в работе с судебными данными и текстами законов. Таких проектов 5 штук только в этой базе, а реально даже больше.

Большая тема, давно нехватает хорошего ассистента который бы вместо юриста мог бы дать простое и понятное объяснение той или иной нормы закона. Задача это, возможно, простая в некоторых кейса и сложная в
большинстве случаев. Например, обсуждается законопроект и хочется иметь чёткое структурированное описание его последствий.

По другим темам тоже немало примеров. Есть на что сослаться и о чём почитать.

Ссылки:
[1] https://repository.opendatapolicylab.org/genai

#opendata #generativeai #genai #ai
Я совсем пропустил публикацию обновлённого China Open Data Index [1] в январе 2024 года, а там интересные цифры в виде 345 853 наборов данных доступных на региональных государственных порталах открытых данных Китая.

А также всего с 2017 года появилось 226 городских порталов открытых данных (60% от всех городов) и 22 региональных портала из 27 провинций.

Точный объём данных на городских порталах неизвестен, но весьма велик почти наверняка.

Много ли это? Да много. Например, в США на портале data.gov опубликовано порядка 300+ тысяч наборов данных из которых от 60 до 80% - это открытые научные данные

А в Китае очень много научных данных доступно через scidb.cn и findata.cn.

Ссылки:
[1] https://ifopendata.fudan.edu.cn

#opendata #china #data