В рубрике как это устроено у них японский национальный репозиторий результатов научных работ IRDB [1], включает 4.1 миллиона ресурсов, большая часть которых это научные статьи, журналы, публикации после конференций и так далее, а также боле чем 124 тысячи наборов исследовательских данных. Чем то IRDB схож с проектами OpenAIRE и SciDB, хотя и сделан весьма консервативнее.
В его основе харвестинг метаданных из более чем 700 научных репозиториев [2] в которых реализовано раскрытие метаданных по стандарту JPCOAR [3] через интерфейсы OAI-PMH. Сам репозиторий IDRB также поддерживает доступ через OAI-PMH [4] и с ним можно взаимодействовать программным образом.
Простота харвестинга во многом обеспечена тем что значительная часть репозиториев - это репозитории на базе open-source ПО Weko3 которое является доработанной версией репозитория для научных публикаций Invenio 3 и который и обеспечивает предоставление метаданных через OAI и, также, предоставляет иные, API упрощающие сбор данных. Weko3 был разработан Национальным институтом информатики Японии, той же организацией что управляет IRDB
У IRDB множество недостатков тоже есть:
- нет bulk download, нельзя скачать базу целиком
- нет документированного API, даже интерфейс OAI не упомянут на сайте, не говоря уже о том что он устарел для большей части задач
- схемы данных описания датасетов весьма консервативны. Нет даже разметки schema.org, не говоря уже о DCAT.
В целом проект выглядит проработанным, живым, но замершим в развитии.
Кстати, китайский проект SciDb сделан очень похожим образом. Также есть ПО институциональных репозиториев созданный структурой Китайской академии наук и централизованный архив/поиск индексирующий все эти репозитории.
Возвращаясь к IRDB, например, для Dateno проще автоматизировать сбор метаданных из японских репозиториев напрямую чем индексировать IRDB именно из-за отсутствия другого API кроме OAI.
Ссылки:
[1] https://irdb.nii.ac.jp
[2] https://irdb.nii.ac.jp/en/repositorylist
[3] https://schema.irdb.nii.ac.jp/en
[4] https://irdb.nii.ac.jp/oai
#opendata #data #openaccess #japan #china #openscience
В его основе харвестинг метаданных из более чем 700 научных репозиториев [2] в которых реализовано раскрытие метаданных по стандарту JPCOAR [3] через интерфейсы OAI-PMH. Сам репозиторий IDRB также поддерживает доступ через OAI-PMH [4] и с ним можно взаимодействовать программным образом.
Простота харвестинга во многом обеспечена тем что значительная часть репозиториев - это репозитории на базе open-source ПО Weko3 которое является доработанной версией репозитория для научных публикаций Invenio 3 и который и обеспечивает предоставление метаданных через OAI и, также, предоставляет иные, API упрощающие сбор данных. Weko3 был разработан Национальным институтом информатики Японии, той же организацией что управляет IRDB
У IRDB множество недостатков тоже есть:
- нет bulk download, нельзя скачать базу целиком
- нет документированного API, даже интерфейс OAI не упомянут на сайте, не говоря уже о том что он устарел для большей части задач
- схемы данных описания датасетов весьма консервативны. Нет даже разметки schema.org, не говоря уже о DCAT.
В целом проект выглядит проработанным, живым, но замершим в развитии.
Кстати, китайский проект SciDb сделан очень похожим образом. Также есть ПО институциональных репозиториев созданный структурой Китайской академии наук и централизованный архив/поиск индексирующий все эти репозитории.
Возвращаясь к IRDB, например, для Dateno проще автоматизировать сбор метаданных из японских репозиториев напрямую чем индексировать IRDB именно из-за отсутствия другого API кроме OAI.
Ссылки:
[1] https://irdb.nii.ac.jp
[2] https://irdb.nii.ac.jp/en/repositorylist
[3] https://schema.irdb.nii.ac.jp/en
[4] https://irdb.nii.ac.jp/oai
#opendata #data #openaccess #japan #china #openscience
Я регулярно рассказываю о том какие самые большие датасеты доступны онлайн, в основном это данные экспериментов с частицами из ITER и данные расшифровки геномов.
Как измерить их? Сколь много данных за этим скрывается? Я приведу в пример геномные данные в рамках проекта 1000 Genomes. Они опубликованы очень банально, на FTP сервере [1]. В среднем, в сжатом виде опубликованный там геном занимает 36 ГБ. Плюс много разных версий, и много данных разных проектов. В итоге общий объём это 876 терабайт. Или, в других цифрах, 0.87 петабайта.
Много это или мало? Вообще-то много. И это только те данные которые общедоступны, которые можно скачать и рассматривать как открытые научные данные.
Ссылки:
[1] https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
#opendata #bigdata #datasets #genomics
Как измерить их? Сколь много данных за этим скрывается? Я приведу в пример геномные данные в рамках проекта 1000 Genomes. Они опубликованы очень банально, на FTP сервере [1]. В среднем, в сжатом виде опубликованный там геном занимает 36 ГБ. Плюс много разных версий, и много данных разных проектов. В итоге общий объём это 876 терабайт. Или, в других цифрах, 0.87 петабайта.
Много это или мало? Вообще-то много. И это только те данные которые общедоступны, которые можно скачать и рассматривать как открытые научные данные.
Ссылки:
[1] https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
#opendata #bigdata #datasets #genomics
Пополнение в каталоге каталогов данных Dateno, +40 репозиториев научных данных на базе Weko3 [1], все они относятся к Японии и в совокупности содержат около 50 тысяч наборов данных. Не очень много по глобальным меркам, но хорошо индексируется и имеет стандартизированное API. Прежде чем данные таких каталогов индексируются в Dateno, они описываются и размещаются в реестре, идентифицируются их точки подключения к API и тд.
Ссылки:
[1] https://dateno.io/registry/country/JP
#opendata #dateno #datacatalogs
Ссылки:
[1] https://dateno.io/registry/country/JP
#opendata #dateno #datacatalogs
В рубрике как это устроено у них публикация данных Международным валютным фондом (IMF). IMF - это значимое финансовое агентство при ООН , отвечающее как за международную финансовую помощь, так и за сбор данных о международных финансах. Значительная часть данных публикуется на основном сайте IMF (www.imf.org) [1], но, также, агентство использует несколько систем раскрытия данных.
- IMF Data [2] основной портал данных IMF с десятками датасетов для массовой выгрузки, сотнями показателей и возможностью доступа к данным индикаторов через SDMX API [3]. В основном все данные связанные с макропоказателями стран.
- Dissemination Standards Bulletin Board (DSBB) [4] портал для сбора и публикации данных в соответствии с разработанными стандартами Расширенной общей системы распространения данных. Эти данные собираются с официальных сайтов стран, как правило страниц на сайте ЦБ, опубликованных по определенным требованиям.
- Portwatch. Monitoring Trade Disruptions from Space [5] совместный проект IMF и Оксфордского университета по мониторингу портов с помощью спутников для идентификации и предупреждения событий которые могут помешать международной торговле. Предоставляет ленту событий, результаты мониторинга и другие данные. Все данные можно скачать, внутри сайта платформа ArcGIS Hub позволяющая массовую выгрузку данных
- Climate Change Indicators Dashboard [6] портал с индикаторами изменений климата по странам. Также на платформе ArcGIS Hub, и также все данные доступны для выгрузки.
Общие наблюдения по изменению в подходе к публикации данных IMF те что и для большей части структур ООН:
- переход к публикации открытых данных по умолчанию
- доступность данных одновременно для массовой выгрузки (bulk), API и в виде веб интерфейсов визуализации
- параллельное использование порталов раскрытия разработанных на заказ и типовых продуктов, в данном случае ArcGIS Hub
Ссылки:
[1] https://www.imf.org
[2] https://data.imf.org
[3] https://datahelp.imf.org/knowledgebase/articles/630877-api
[4] https://dsbb.imf.org/
[5] https://portwatch.imf.org/
[6] https://climatedata.imf.org/
#opendata #datasets #dataportals #statistics #finances #economics
- IMF Data [2] основной портал данных IMF с десятками датасетов для массовой выгрузки, сотнями показателей и возможностью доступа к данным индикаторов через SDMX API [3]. В основном все данные связанные с макропоказателями стран.
- Dissemination Standards Bulletin Board (DSBB) [4] портал для сбора и публикации данных в соответствии с разработанными стандартами Расширенной общей системы распространения данных. Эти данные собираются с официальных сайтов стран, как правило страниц на сайте ЦБ, опубликованных по определенным требованиям.
- Portwatch. Monitoring Trade Disruptions from Space [5] совместный проект IMF и Оксфордского университета по мониторингу портов с помощью спутников для идентификации и предупреждения событий которые могут помешать международной торговле. Предоставляет ленту событий, результаты мониторинга и другие данные. Все данные можно скачать, внутри сайта платформа ArcGIS Hub позволяющая массовую выгрузку данных
- Climate Change Indicators Dashboard [6] портал с индикаторами изменений климата по странам. Также на платформе ArcGIS Hub, и также все данные доступны для выгрузки.
Общие наблюдения по изменению в подходе к публикации данных IMF те что и для большей части структур ООН:
- переход к публикации открытых данных по умолчанию
- доступность данных одновременно для массовой выгрузки (bulk), API и в виде веб интерфейсов визуализации
- параллельное использование порталов раскрытия разработанных на заказ и типовых продуктов, в данном случае ArcGIS Hub
Ссылки:
[1] https://www.imf.org
[2] https://data.imf.org
[3] https://datahelp.imf.org/knowledgebase/articles/630877-api
[4] https://dsbb.imf.org/
[5] https://portwatch.imf.org/
[6] https://climatedata.imf.org/
#opendata #datasets #dataportals #statistics #finances #economics
Хороший пример дата журналистики / аналитики, заметка CrowdStrike's Impact on Aviation [1]. Автор проанализировал данный показаний датчиков ADS-B для отслеживания самолётов и замерил реальные последствия падения антивируса CrowdStrike для авиации.
Итоги впечатляющие, анализ полезный для всех тех кто вломит CrowdStrike иски. Хочется надеятся что их разорят каким-нибудь особо болезненным способом чтобы такого больше никогда не повторилось (кровожадно).
Там же в статье ещё несколько инсайтов по тому как работают авиакомпании в США, речь тут о них в первую очередь.
Ссылки:
[1] https://heavymeta.org/2024/07/28/crowdstrikes-impact-on-aviation.html
#aviation #data #datajournalism #opendata #adsb #datanalysis
Итоги впечатляющие, анализ полезный для всех тех кто вломит CrowdStrike иски. Хочется надеятся что их разорят каким-нибудь особо болезненным способом чтобы такого больше никогда не повторилось (кровожадно).
Там же в статье ещё несколько инсайтов по тому как работают авиакомпании в США, речь тут о них в первую очередь.
Ссылки:
[1] https://heavymeta.org/2024/07/28/crowdstrikes-impact-on-aviation.html
#aviation #data #datajournalism #opendata #adsb #datanalysis
В рубрике больших каталогов геоданных - портал ArcGIS и поиск на нём [1] на онлайн сервисе компании Esri .
Ещё до появления хаба открытых данных Esri [2] который используют многочисленные муниципалитеты для публикации геоданных и данных, у Esri был и остаётся сервис поиска по георесурсам которые создавали пользовали их облачной платформы и далее делали их общедоступными.
Эти ресурсы включают: слои карт, карты, сцены, приложения, файлы и дата истории. По большей части, конечно, слои карт и файлы.
Точные объёмы измерить сложно, но вряд ли это меньше чем сотни тысяч гео ресурсов.
Главный минус - ограниченные метаданные ассоциированные с этими ресурсами.
Главный плюс - возможность найти геоданные по странам где собственные геоданные почти не существуют онлайн.
Ссылки:
[1] https://www.arcgis.com/home/search.html
[2] https://hub.arcgis.com
#opendata #arcgis #datasets #geodata #maps
Ещё до появления хаба открытых данных Esri [2] который используют многочисленные муниципалитеты для публикации геоданных и данных, у Esri был и остаётся сервис поиска по георесурсам которые создавали пользовали их облачной платформы и далее делали их общедоступными.
Эти ресурсы включают: слои карт, карты, сцены, приложения, файлы и дата истории. По большей части, конечно, слои карт и файлы.
Точные объёмы измерить сложно, но вряд ли это меньше чем сотни тысяч гео ресурсов.
Главный минус - ограниченные метаданные ассоциированные с этими ресурсами.
Главный плюс - возможность найти геоданные по странам где собственные геоданные почти не существуют онлайн.
Ссылки:
[1] https://www.arcgis.com/home/search.html
[2] https://hub.arcgis.com
#opendata #arcgis #datasets #geodata #maps
В рубрике как это устроено у них Национальная служба сельскохозяйственной статистики США (NASS) [1] собирает и раскрывает данные по сельскохозяйственным территориям, урожаю, демографии, экономике и иным предметам статистического наблюдения по всей территории США с детализацией до отдельных графств, аналог муниципалитетов.
Все данные доступны, как классическим образом, в форме таблиц и построителя запросов, так и с возможностью получить базу статистики сразу и целиком в виде нескольких файлов общим объёмом в 3GB в сжатом виде, актуализируемых ежесуточно.
А также доступ организован через API системы Quick Stats где нужные данные можно получить быстро и в формате JSON. [3]
Дополнительно эти данные распространяются в виде геопространственных данных через несколько картографических сервисов [4]
Ссылки:
[1] https://www.nass.usda.gov
[2] https://www.nass.usda.gov/datasets/
[3] https://quickstats.nass.usda.gov/api
[4] https://croplandcros.scinet.usda.gov/
#opendata #usa #statistics #agriculture #datasets
Все данные доступны, как классическим образом, в форме таблиц и построителя запросов, так и с возможностью получить базу статистики сразу и целиком в виде нескольких файлов общим объёмом в 3GB в сжатом виде, актуализируемых ежесуточно.
А также доступ организован через API системы Quick Stats где нужные данные можно получить быстро и в формате JSON. [3]
Дополнительно эти данные распространяются в виде геопространственных данных через несколько картографических сервисов [4]
Ссылки:
[1] https://www.nass.usda.gov
[2] https://www.nass.usda.gov/datasets/
[3] https://quickstats.nass.usda.gov/api
[4] https://croplandcros.scinet.usda.gov/
#opendata #usa #statistics #agriculture #datasets
В рубрике как это устроено у них TERN Data Discovery Portal [1] в Австралии, портал открытых исследовательских данных созданный в рамках проекта Terrestrial Ecosystem Research Network на базе Университета Квинсленда и поддерживаемый в рамках National Collaborative Research Infrastructure Strategy.
На портале не так много данных как на других государственных порталах данных страны, всего 2724 набора данных, но важное его отличие - это проработка профиля метаданных, высокое качество описания всех датасетов и их доступность в специальных научных форматах. Так на портале присутствует 13 фильтров для фасетного поиска, фасетный поиск вообще хорошо годится для поиска по данным и тут он неплох. А также все датасеты публикуются по спецификации Research Object Crate (RO-Crate) [2], похожей на стандарт Frictionless Data, но используемый для научных данных.
Ссылки:
[1] https://portal.tern.org.au
[2] https://www.researchobject.org/ro-crate/
#opendata #data #earthsciences #datacatalogs #australia #tern #geodata
На портале не так много данных как на других государственных порталах данных страны, всего 2724 набора данных, но важное его отличие - это проработка профиля метаданных, высокое качество описания всех датасетов и их доступность в специальных научных форматах. Так на портале присутствует 13 фильтров для фасетного поиска, фасетный поиск вообще хорошо годится для поиска по данным и тут он неплох. А также все датасеты публикуются по спецификации Research Object Crate (RO-Crate) [2], похожей на стандарт Frictionless Data, но используемый для научных данных.
Ссылки:
[1] https://portal.tern.org.au
[2] https://www.researchobject.org/ro-crate/
#opendata #data #earthsciences #datacatalogs #australia #tern #geodata
Кстати, если вы ещё не видели, мы обновили главную страницу Dateno [1] и выглядит всё лучше и лучше, а заодно можно сразу увидеть того сколько датасетов есть по разным макрорегионам.
Можно увидеть насколько много данных по развитым регионам и насколько их мало, к примеру, по Африке.
Правда у этих цифр есть объективная причина.Она в том что да, в развитых странах гораздо больше данных из-за лучшей цифровизации, культуры открытости, культуры работы с данными и тд. Данных очень много и всё больше гиперлокальных, муниципальных данных
Поэтому данных по Африке так мало, даже когда мы продолжим георазметку датасетов, всё равно их будет сильно меньше чем где-то ещё и большая часть этих данных будет создана в США и Европейских странах.
А вот то что мало данных по Азии, у этого есть объективные причины необходимости индексирования данных по Китаю, где свой уникальный софт, свои каталоги данных и тд. Если даже только основные репозитории проиндексировать там будет несколько миллионов наборов данных, но все на китайском языке😂
Ссылки:
[1] https://dateno.io
#opendata #dateno #datasets #datasearch #search
Можно увидеть насколько много данных по развитым регионам и насколько их мало, к примеру, по Африке.
Правда у этих цифр есть объективная причина.Она в том что да, в развитых странах гораздо больше данных из-за лучшей цифровизации, культуры открытости, культуры работы с данными и тд. Данных очень много и всё больше гиперлокальных, муниципальных данных
Поэтому данных по Африке так мало, даже когда мы продолжим георазметку датасетов, всё равно их будет сильно меньше чем где-то ещё и большая часть этих данных будет создана в США и Европейских странах.
А вот то что мало данных по Азии, у этого есть объективные причины необходимости индексирования данных по Китаю, где свой уникальный софт, свои каталоги данных и тд. Если даже только основные репозитории проиндексировать там будет несколько миллионов наборов данных, но все на китайском языке
Ссылки:
[1] https://dateno.io
#opendata #dateno #datasets #datasearch #search
Please open Telegram to view this post
VIEW IN TELEGRAM
Наконец то я дописал лонгрид про официальную статистику как дата продукт, частично пересекаясь с ранее написанным текстом про то как хорошо публиковать статистику. Вот тут текст https://begtin.substack.com/p/694
Пока писал не покидало ощущение что это же всё очевидно как-то, но... очевидно-неочевидно, а далеко не везде встречается.
#statistics #opendata #data
Пока писал не покидало ощущение что это же всё очевидно как-то, но... очевидно-неочевидно, а далеко не везде встречается.
#statistics #opendata #data
Ivan’s Begtin Newsletter on digital, open and preserved government
Статистика как дата продукт
Недавно, во время анализа многих международных и национальных порталов официальной статистики, я прочитал неплохую сжатую статью Deliver Your Data as a Product, But Not as an Application.
Свежий полезный ресурс про открытые данные о том как открытые данные пересекаются с генеративным ИИ, Observatory of Examples of How Open Data and Generative AI Intersect [1]
Много примеров применения ИИ в разных сферах, обученных на общедоступных и открытых данных. Например, меня заинтересовали исследования по применению ИИ в работе с судебными данными и текстами законов. Таких проектов 5 штук только в этой базе, а реально даже больше.
Большая тема, давно нехватает хорошего ассистента который бы вместо юриста мог бы дать простое и понятное объяснение той или иной нормы закона. Задача это, возможно, простая в некоторых кейса и сложная в
большинстве случаев. Например, обсуждается законопроект и хочется иметь чёткое структурированное описание его последствий.
По другим темам тоже немало примеров. Есть на что сослаться и о чём почитать.
Ссылки:
[1] https://repository.opendatapolicylab.org/genai
#opendata #generativeai #genai #ai
Много примеров применения ИИ в разных сферах, обученных на общедоступных и открытых данных. Например, меня заинтересовали исследования по применению ИИ в работе с судебными данными и текстами законов. Таких проектов 5 штук только в этой базе, а реально даже больше.
Большая тема, давно нехватает хорошего ассистента который бы вместо юриста мог бы дать простое и понятное объяснение той или иной нормы закона. Задача это, возможно, простая в некоторых кейса и сложная в
большинстве случаев. Например, обсуждается законопроект и хочется иметь чёткое структурированное описание его последствий.
По другим темам тоже немало примеров. Есть на что сослаться и о чём почитать.
Ссылки:
[1] https://repository.opendatapolicylab.org/genai
#opendata #generativeai #genai #ai