It was recommended to me, the book "Introduction to Statistical Learning":
https://hastie.su.domains/ISLR2/
and the lectures based on it:
https://www.youtube.com/watch?v=5N9V07EIfIg&list=PLOg0ngHtcqbPTlZzRHA2ocQZqB1D_qZ5V
The lectures seem pretty fun. 😊
#statistics #datascience #book #lectures
https://hastie.su.domains/ISLR2/
and the lectures based on it:
https://www.youtube.com/watch?v=5N9V07EIfIg&list=PLOg0ngHtcqbPTlZzRHA2ocQZqB1D_qZ5V
The lectures seem pretty fun. 😊
#statistics #datascience #book #lectures
YouTube
StatsLearning Lecture 1 - part1
❤1
https://nickchk.com/causalgraphs.html
Causal inference! With animations! 😄
The post explains and illustrates basic notions and methods of causal inference with examples from econometrics. And animated plots, yep.
#causalinference #statistics
Causal inference! With animations! 😄
The post explains and illustrates basic notions and methods of causal inference with examples from econometrics. And animated plots, yep.
#causalinference #statistics
👍1
https://imgur.com/a/rnATR7D
A flowchart guiding a regression model construction out of bunch of variables. Touches subtle causal issues.
#statistics #datascience
A flowchart guiding a regression model construction out of bunch of variables. Touches subtle causal issues.
#statistics #datascience
Imgur
A Flowchart for Constructing a Regression Model
Post with 1582 views. A Flowchart for Constructing a Regression Model
https://lost-stats.github.io/
"LOST is a Rosetta Stone for statistical software"
Or "Rosetta Code". Useful reference either way.
#statistics #datascience
"LOST is a Rosetta Stone for statistical software"
Or "Rosetta Code". Useful reference either way.
#statistics #datascience
https://nickch-k.github.io/SomeThoughts/posts/2022-01-23-overdebunked/
How NOT to critique #statistics especially when you know it barely enough to make yourself look stupid (like I do 😁).
How NOT to critique #statistics especially when you know it barely enough to make yourself look stupid (like I do 😁).
Some Thoughts
Some Thoughts: Overdebunked! Six Statistical Critiques That Don't Quite Work
When healthy skepticism of statistics turns into worse statistics (and an excuse).
https://nickchk.com/robustness.html
A short practical guide on robustness tests in #statistics It even has a "checklist" to fill in! 😄 And a list of misconceptions too.
A short practical guide on robustness tests in #statistics It even has a "checklist" to fill in! 😄 And a list of misconceptions too.
https://www.markhw.com/blog/causalforestintro
A hands-on overview and tutorial on estimating Heterogeneous Treatment Effects in particular with honest causal forests (R package
#statistics #causalinference
A hands-on overview and tutorial on estimating Heterogeneous Treatment Effects in particular with honest causal forests (R package
grf
).#statistics #causalinference
Mark H. White II, PhD
Explicitly Optimizing on Causal Effects via the Causal Random Forest: A Practical Introduction and Tutorial — Mark H. White II…
UPDATE (February 2023): An updated and expanded version of this post now appears as a book chapter. If you wish to cite this guide, you can do so using: Green, J., & White, M. H., II. (2023). Machine Learning for Experiments in the Social Sciences.…
https://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf
"An introduction to Hidden Markov Models and Bayesian Networks" Ghahramani, 2001
#statistics #bayes
"An introduction to Hidden Markov Models and Bayesian Networks" Ghahramani, 2001
#statistics #bayes
https://www.markhw.com/blog/aphextwin
#Statistics proves: Aphex Twin has more diverse discography than his peers. 😁
Very interesting post showcasing clever statistical analysis.
#Statistics proves: Aphex Twin has more diverse discography than his peers. 😁
Very interesting post showcasing clever statistical analysis.
Mark H. White II, PhD
Examining Aphex Twin's Eclectic Discography With the Spotify API and Generalized Variance — Mark H. White II, PhD
👍1
https://www.inference.vc/the-secular-bayesian-using-belief-distributions-without-really-believing/
A fun introduction to "dogmatic Bayesianism" but actually a deep review of a paper on general Bayes-like update rules.
#statistics #bayes #paper
A fun introduction to "dogmatic Bayesianism" but actually a deep review of a paper on general Bayes-like update rules.
#statistics #bayes #paper
inFERENCe
The secular Bayesian: Using belief distributions without really believing
The religious BayesianMy parents didn't raise me in a religious tradition. It all started to change when a great scientist took me under his wing and taught me the teachings of Bayes. I travelled the world and spent 4 years in a Bayesian monastery in Cambridge…
https://statmodeling.stat.columbia.edu/2020/07/02/no-i-dont-believe-that-claim-based-on-regression-discontinuity-analysis-that/
A great post with thorough replication/reanalysis/discussion and we might say debunking. Also an example of pretty decent scientific discussion. Plus deep technical dives in the comments.
#statistics #rdd
A great post with thorough replication/reanalysis/discussion and we might say debunking. Also an example of pretty decent scientific discussion. Plus deep technical dives in the comments.
#statistics #rdd
https://statmodeling.stat.columbia.edu/2023/01/03/explanation-and-reproducibility-in-data-driven-science-new-course/
WOW, a great reading list on #statistics and #machinelearning ! And an important topic for a course. Especially targeting CS students.
WOW, a great reading list on #statistics and #machinelearning ! And an important topic for a course. Especially targeting CS students.
https://dmkpress.com/catalog/computer/statistics/978-5-93700-245-7/
«В поисках эффекта. Планирование экспериментов и причинный вывод в статистике»
ДМК перевели и издали книгу Nick Huntington-Klein, оригинал которой (и ещё записи лекций в придачу) можно найти онлайн:
https://www.theeffectbook.net/
(или купить на Amazon).
Я, безусловно, это дело полностью одобряю и поддерживаю. Во-первых, я — фанат "причинного вывода" (или "вывода причин"? короче, causal inference). Никому не интересно, что рост продаж коррелирует с увеличением маркетингового бюджета, все хотят знать, приводит ли увеличение бюджета на маркетинг к (дополнительному) росту продаж или нет. Во-вторых, я знаю автора как инициатора и основного контрибьютора https://lost-stats.github.io/ а также видео на YouTube — он создаёт впечатление знающего и весёлого малого. В-третьих, в своём учебнике он делает упор на концептуальное понимание причинности или её отсутствия, планирование экспериментов (experimental design) и казуальные графы a la Judea Pearl. Но и примеры реализации методов causal inference на R, Python и Stata тоже приводит (их и домашние задания можно забрать с GitHub по ссылкам с сайта книги).
Единственное, что вызывает подозрения — перевод статистических терминов. Estimator почему-то называют "оценивателем", и я не думаю, что наши статистики так говорят... Впрочем, в остальном перевод выглядит вполне достойным и передающим немного шутливый авторский стиль.
#book #statistics #causalinference
«В поисках эффекта. Планирование экспериментов и причинный вывод в статистике»
ДМК перевели и издали книгу Nick Huntington-Klein, оригинал которой (и ещё записи лекций в придачу) можно найти онлайн:
https://www.theeffectbook.net/
(или купить на Amazon).
Я, безусловно, это дело полностью одобряю и поддерживаю. Во-первых, я — фанат "причинного вывода" (или "вывода причин"? короче, causal inference). Никому не интересно, что рост продаж коррелирует с увеличением маркетингового бюджета, все хотят знать, приводит ли увеличение бюджета на маркетинг к (дополнительному) росту продаж или нет. Во-вторых, я знаю автора как инициатора и основного контрибьютора https://lost-stats.github.io/ а также видео на YouTube — он создаёт впечатление знающего и весёлого малого. В-третьих, в своём учебнике он делает упор на концептуальное понимание причинности или её отсутствия, планирование экспериментов (experimental design) и казуальные графы a la Judea Pearl. Но и примеры реализации методов causal inference на R, Python и Stata тоже приводит (их и домашние задания можно забрать с GitHub по ссылкам с сайта книги).
Единственное, что вызывает подозрения — перевод статистических терминов. Estimator почему-то называют "оценивателем", и я не думаю, что наши статистики так говорят... Впрочем, в остальном перевод выглядит вполне достойным и передающим немного шутливый авторский стиль.
#book #statistics #causalinference
Dmkpress
В поисках эффекта. Планирование экспериментов и причинный вывод в статистике
Купить книгу «В поисках эффекта. Планирование экспериментов и причинный вывод в статистике», автора Хантингтон-Клейн Н. в издательстве «ДМК Пресс». Выгодные цены в Москве, доставка. Заказать книги и учебники на официальном сайте издательства.
❤2👏1
Again on my favorite topic of correlation, causation and control systems.
"When causation does not imply correlation" presents pretty technical analysis (with a couple of theorems) of conditions when a control system "breaks the circuit" and decorrelates variables:
https://arxiv.org/abs/1505.03118
I wrestled with this issue when I did a control system parameters' identification from sensor data using machine learning. Judging from data some actions had no effect because they were kicking in precisely in order to counteract another force and keep the readings the same.
Then the "Slime Mold" guys rediscovered this effect, and they provide nice, approachable illustrations:
https://slimemoldtimemold.com/2022/03/15/control-and-correlation/
More comments from Gelman's blog including long historic roots of this observation:
https://statmodeling.stat.columbia.edu/2024/01/15/a-feedback-loop-can-destroy-correlation-this-idea-comes-up-in-many-places/
#statistics #machinelearning
"When causation does not imply correlation" presents pretty technical analysis (with a couple of theorems) of conditions when a control system "breaks the circuit" and decorrelates variables:
https://arxiv.org/abs/1505.03118
I wrestled with this issue when I did a control system parameters' identification from sensor data using machine learning. Judging from data some actions had no effect because they were kicking in precisely in order to counteract another force and keep the readings the same.
Then the "Slime Mold" guys rediscovered this effect, and they provide nice, approachable illustrations:
https://slimemoldtimemold.com/2022/03/15/control-and-correlation/
More comments from Gelman's blog including long historic roots of this observation:
https://statmodeling.stat.columbia.edu/2024/01/15/a-feedback-loop-can-destroy-correlation-this-idea-comes-up-in-many-places/
#statistics #machinelearning
arXiv.org
When causation does not imply correlation: robust violations of...
We demonstrate that the Faithfulness property that is assumed in much causal analysis is robustly violated for a large class of systems of a type that occurs throughout the life and social...
❤1
https://statmodeling.stat.columbia.edu/2024/08/21/which-books-papers-and-blogs-are-in-the-bayesian-canon/
(An attempt at establishing) A "Bayesian Canon": a list of "must read" books, papers and blogs about #bayesian #statistics
They aren't really must read but there are some extremely interesting specimens.
(An attempt at establishing) A "Bayesian Canon": a list of "must read" books, papers and blogs about #bayesian #statistics
They aren't really must read but there are some extremely interesting specimens.
🔥2
And another #free #book on #statistics from the list above:
https://tellingstorieswithdata.com/
It covers data search, acquisition, preparation and storage, exploratory data analysis, generalized linear models, causal inference, multilevel regression and post-stratification, visualization and reporting, and making the workflow reproducible.
Examples are in R (employing the Tidiverse), and there are questions and exercises at the end of every chapter.
https://tellingstorieswithdata.com/
It covers data search, acquisition, preparation and storage, exploratory data analysis, generalized linear models, causal inference, multilevel regression and post-stratification, visualization and reporting, and making the workflow reproducible.
Examples are in R (employing the Tidiverse), and there are questions and exercises at the end of every chapter.
Tellingstorieswithdata
Telling Stories with Data
🔥2