Вы уже заметили, что есть две конкурентные статьи со схожей идеей: Наша Cache Me if You Can и работа DeepCache, которая появилась на архиве пару дней назад.
Основная разница в том, что в DeepCache алгоритм кеширования примитивный, мы же предлагаем более общий и адаптивный подход:
1️⃣ В DeepCache авторы вручную выбирают, какие блоки кешируются, и алгоритм пересчета кеша для всех блоков фиксированный. У нас же все адаптивно - автоматически подбираем какие блоки кешировать и как часто пересчитывать кеш. На картинке как раз показан алгоритм пересчета кеша, котрый мы получили для LDM c 20 шагами DPM++.
2️⃣ За счет этого наш алгоритм из коробки работает на разных text2image архитектурах, мы протестили на LDM c 900 млн параметров (аналог SD 1.5) и на Emu с 2.7 млрд параметров.
3️⃣ Мы предложили трюк с обучением shift & scale для кешируемых блоков, что сильно добрасывает качества, убирая мелкие артифакты.
4️⃣ У нас метрики от кеширования не падают как в DeepCache. И картинки получаются лучшего качества.
5️⃣ Мы показали, что при фиксированном бюджете на вычисления, Cache Me if You Can улучшает результаты генерации по сравнению с бейзлайном без кеширования, так как с нашим кешированием можно успеть прогнать большее число шагов солвера за фиксированное время. Например, вместо 14 шагов DPM++ для бейзлайна можно успеть прогнать 20 шагов DPM++ с нашим кешированием.
6️⃣ У нас можно варьировать trade-off между скоростью и качеством, меняя один гиперпараметр, который адаптивно определяет время жизни кеша для разных блоков. Чем больше врмя жизни кеша - тем быстрее инференс. После определенного порога скорость идет в урон качеству.
@ai_newz
Основная разница в том, что в DeepCache алгоритм кеширования примитивный, мы же предлагаем более общий и адаптивный подход:
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Хочу еще заметить, что всякие Latent Consistency Models (LCM) и SDXL-Turbo, работающие за ≤ 4 шага - это ортогональные к кешингу работы. При таком сильном снижении числа шагов, как правило значительно страдает чувствительность к промпту (так называемый text faithfulness). То есть ты просишь сгенерить "кота в сапогах и собаку", а модель теряет собаку.
На видео видно как лажает SDXL-Turbo на промптах с несколькими объектами. Да и сама картинка сильно хуже выглядит чем при 20 шагах, например.
@ai_newz
На видео видно как лажает SDXL-Turbo на промптах с несколькими объектами. Да и сама картинка сильно хуже выглядит чем при 20 шагах, например.
@ai_newz
Не хотел писать про Gemini, который на днях анонсировали как мультимодальную модель уровня GPT-4, пока сам не пощупаю. Но Google обделался в пиаре своего Gemini, что тут грех не написать.
Демо-видео Gemini оказалось смонтированным, а не отражающим реальные возможности модели в реал-тайм. Видео нарезали, ускорили и смонтировали, выбросив то, какие именно промпты и какие кадры подавались модели, чтобы получить красивые ответы для демки.
Google признал монтаж, но утверждает, что целью было вдохновить разработчиков. ПРОСТО ГЕНИИ🤣 .
Кстати, у Гугла был похожий PR-провал во время анонса Bard👍 .
@ai_newz
Демо-видео Gemini оказалось смонтированным, а не отражающим реальные возможности модели в реал-тайм. Видео нарезали, ускорили и смонтировали, выбросив то, какие именно промпты и какие кадры подавались модели, чтобы получить красивые ответы для демки.
Google признал монтаж, но утверждает, что целью было вдохновить разработчиков. ПРОСТО ГЕНИИ
Кстати, у Гугла был похожий PR-провал во время анонса Bard
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
БОЛЬШИЕ НОВОСТИ - Согласован Европейский The AI Act!
TL;DR: На большие AI модели наложено очень много ограничений. Кончилась лафа для компаний, строящих LLM в EU.
Основные последствия The AI Act:
1️⃣ Система рисков по уровням: Для систем AI, классифицированных как высокорисковые, были согласованы четкие обязательства и требования прозрачности. Теперь потребуется обязательная оценка потенциально негативных воздействий на здравоохранение, безопасность, базовые права человека, и общество в целом.
2️⃣ Foundation модели будут регулироваться, если на их обучение ушло как минимум 10^25 flops вычислительной мощности - в эту категорию попадут модели как минимум уровня GPT-3.5.
3️⃣ Благодаря немцам, французам и итальянцам удалось добиться значительных поблажек для Open-Source моделей. Это слегка снимает стресс с некоторых компаний которые публикуют опенсорсные модели, включая французскую компанию Mistral и немецкую Aleph Alpha, а также Meta с ее моделями LLaMA. Ян Лекун поспособствовал.
4️⃣ Следующие системы будут запрещены, и у компаний будет всего шесть месяцев, чтобы обеспечить соблюдение:
▪️системы биометрической категоризации, использующие чувствительные характеристики (например, политические, религиозные, философские убеждения, сексуальная ориентация, раса);
▪️ненаправленное скрейпинг изображений лиц из интернета или с камер видеонаблюдения для создания баз данных распознавания лиц;
▪️распознавание эмоций на рабочем месте и в образовательных учреждениях;
▪️социальное скоринг на основе социального поведения или личных характеристик;
▪️ AI, которые манипулируют человеческим поведением, чтобы обойти их свободную волю;
▪️AI, используемый для эксплуатации уязвимостей людей (из-за их возраста, инвалидности, социального или экономического положения).
5️⃣ Системы AI высокого риска будут особенно тщательно проверяться на наличие байесов, предвзятости, обеспечивая их недискриминационность и уважение основных прав человека.
6️⃣ Поставщики систем AI высокого риска должны вести тщательную документацию, чтобы продемонстрировать свое соответствие регуляциям. Это включает запись методов обучения и используемых наборов данных.
7️⃣ Санкции: Несоблюдение может привести к значительным штрафам, варьирующимся от 35 миллионов евро или 7% от глобального оборота до 7,5 миллиона евро или 1,5% от оборота, в зависимости от нарушения и размера компании.
Усиленные требования к прозрачности могут вызвать проблемы с защитой интеллектуальной собственности, требуя баланса между раскрытием информации и сохранением коммерческой тайны.
Все это потенциально увеличит операционные затраты и наложет значительную административную нагрузку, что потенциально может повлиять на время выхода на рынок новых AI продуктов в Европе.
А скоро, думаю, и другие страны подтянутся со своими законами. В долгосрок выиграют те, кто не так сильно закинет удавку на разработчиков AI. Как же сейчас британские компании радуются, что они не в EU.
@ai_newz
TL;DR: На большие AI модели наложено очень много ограничений. Кончилась лафа для компаний, строящих LLM в EU.
Основные последствия The AI Act:
▪️системы биометрической категоризации, использующие чувствительные характеристики (например, политические, религиозные, философские убеждения, сексуальная ориентация, раса);
▪️ненаправленное скрейпинг изображений лиц из интернета или с камер видеонаблюдения для создания баз данных распознавания лиц;
▪️распознавание эмоций на рабочем месте и в образовательных учреждениях;
▪️социальное скоринг на основе социального поведения или личных характеристик;
▪️ AI, которые манипулируют человеческим поведением, чтобы обойти их свободную волю;
▪️AI, используемый для эксплуатации уязвимостей людей (из-за их возраста, инвалидности, социального или экономического положения).
Усиленные требования к прозрачности могут вызвать проблемы с защитой интеллектуальной собственности, требуя баланса между раскрытием информации и сохранением коммерческой тайны.
Все это потенциально увеличит операционные затраты и наложет значительную административную нагрузку, что потенциально может повлиять на время выхода на рынок новых AI продуктов в Европе.
А скоро, думаю, и другие страны подтянутся со своими законами. В долгосрок выиграют те, кто не так сильно закинет удавку на разработчиков AI. Как же сейчас британские компании радуются, что они не в EU.
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
TechCrunch
EU lawmakers bag late night deal on ‘global first’ AI rules
After marathon 'final' talks which stretched to almost three days European Union lawmakers have tonight clinched a political deal on a risk-based After marathon 'final' talks which stretched to almost three days European Union lawmakers have tonight clinched…
Мой кент Yann LeCun зашерил пост про нашу недавнюю статью к себе на страницу.
Мелочь, а приятно.🚬
#personal
@ai_newz
Мелочь, а приятно.
#personal
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Цук запости в инсте, что уже начал тестировать мультимодальную AI в очках Meta Ray Ban. Сеточка умеет распознавать то, что видит и отвечать на голосовые команды. Ждем, когда эта фича будет официально в проде!
Это реально круто же, если оно в риалтайме будет помогать жить вашу жизнь. А когда модель начнет локально бегать на телефоне - вот это будет пушка.
@ai_newz
Это реально круто же, если оно в риалтайме будет помогать жить вашу жизнь. А когда модель начнет локально бегать на телефоне - вот это будет пушка.
@ai_newz
⚡️У Гугла вышла новая text-2-image модель Imagen 2.
Есть блогпост да и только. Конечно, улучшение по сравнению с Imagen 1 налицо, но пока трудно сказать, в чем тут новшество. Статьи нет.
Обещают сильно улучшенный реализм и text faithfulness, то есть модель более чутко реагирует на текстовый запрос.
Обратите внимание, что на руке сгенерило 5 пальцев!
Доступна модель пока только через Imagen API in Google Cloud Vertex AI. Напишите, если кто разберется как пользоваться.
@ai_newz
Есть блогпост да и только. Конечно, улучшение по сравнению с Imagen 1 налицо, но пока трудно сказать, в чем тут новшество. Статьи нет.
Обещают сильно улучшенный реализм и text faithfulness, то есть модель более чутко реагирует на текстовый запрос.
Обратите внимание, что на руке сгенерило 5 пальцев!
Доступна модель пока только через Imagen API in Google Cloud Vertex AI. Напишите, если кто разберется как пользоваться.
@ai_newz
This media is not supported in your browser
VIEW IN TELEGRAM
Короче, мы выкатили диффузию в инстаграм для редактирования изображений, а именно - генерацию фона по тексту. Эта модель была анонсирована еще на Connect, но только сейчас ее выкатили в прод в США.
Загружаешь фото, вводишь любой пропмт, например, "преследуемый динозаврами" или "я в Париже", и получаешь несколько новых версий своей фотки.
Моделька основана на нашей text2image диффузии Emu и технологии по типу SAM, которая позволяет автоматически находить нужную маску.
Тут я говорю "мы выкатили", потому что мы с нашей командой крутили и искоряли эту модель, чтобы она работала за пару секунд.
Диффузия Go Brrrrr! - это лозунг нашей команды.
Приятно, когда результатами твоей работы могут пользоваться миллионы людей. Даже работая в ресерче в фаанге, не всегда есть такая возможность. Мне в этом смысле повезло, т.к. наша GenAI орга, кроме написания статей, ещё и катит ресерч в продукты и имеет реальный импакт.
#personal #мойпуть
@ai_newz
Загружаешь фото, вводишь любой пропмт, например, "преследуемый динозаврами" или "я в Париже", и получаешь несколько новых версий своей фотки.
Моделька основана на нашей text2image диффузии Emu и технологии по типу SAM, которая позволяет автоматически находить нужную маску.
Тут я говорю "мы выкатили", потому что мы с нашей командой крутили и искоряли эту модель, чтобы она работала за пару секунд.
Диффузия Go Brrrrr! - это лозунг нашей команды.
Приятно, когда результатами твоей работы могут пользоваться миллионы людей. Даже работая в ресерче в фаанге, не всегда есть такая возможность. Мне в этом смысле повезло, т.к. наша GenAI орга, кроме написания статей, ещё и катит ресерч в продукты и имеет реальный импакт.
#personal #мойпуть
@ai_newz
Сегодня Яндекс подвел итоги своей премии за вклад в науку в области машинного обучения — Yandex ML Prize. Я просмотрел список лауреатов, их в этом году было 11, и многие из них получили премию за генеративные сети, вокруг которых был особый ажиотаж в этом году, а также за исследования в области распознавания и синтеза речи, компьютерного зрения, информационного поиска, обработки естественного языка.
Это классная инициатива — студентов и учёных-новичков мотивируют заниматься наукой и еще дополнительно поощряют за публикации статей и выступления на топовых международных конференциях. Размер премий — от 500k до 1kk рублей плюс грант на использование платформы Yandex Cloud, которые можно пустить на эксперименты и большие вычисления.
@ai_newz
Это классная инициатива — студентов и учёных-новичков мотивируют заниматься наукой и еще дополнительно поощряют за публикации статей и выступления на топовых международных конференциях. Размер премий — от 500k до 1kk рублей плюс грант на использование платформы Yandex Cloud, которые можно пустить на эксперименты и большие вычисления.
@ai_newz
Там сейчас идёт NeurIPS 2023 в новом Орлеане — топовое событие в мире AI. Год назад я писал о своей поездке на NeurIPS 2022, где я презентовал статью. Забавно, что в этом году конфа опять в Новом Орлеане (видать, очень удачный город для проведения таких тусовок), но у меня не получилось поехать из-за визы.
Кстати, это фото сделано на NIPS 2002 (не мной), когда конфа была маленькой и ламповой, а не как сейчас на более чем 10к человек.
Узнаете кого-нибудь на фото?
@ai_newz
Кстати, это фото сделано на NIPS 2002 (не мной), когда конфа была маленькой и ламповой, а не как сейчас на более чем 10к человек.
Узнаете кого-нибудь на фото?
@ai_newz
Сейчас часто слышу мнение, что конкуренция в AI очень высокая, и опубликоваться на лучших конференциях почти нереально. В качестве мотивации для начинающих ресерчеров скажу, что сейчас не труднее чем 5 лет назад, просто нужно уметь креативно подходить к ресерчу, если нет кластера из 1000 GPU.
Вот хороший пример того, как молодые ребята могут и пишут статьи на топовые конфы. Парни написали 4 статьи [1, 2, 3, 4] на NeurIPS в этом году, и получили Yandex ML Prize. Один как научный руководитель, в второй как PhD студент с первой топовой публикацией. Заходить в PhD со статьи на Нипсе — это нагло! Я, кстати, тоже начал свою научную карьеру именно со статьи на Нипсе.
@ai_newz
Вот хороший пример того, как молодые ребята могут и пишут статьи на топовые конфы. Парни написали 4 статьи [1, 2, 3, 4] на NeurIPS в этом году, и получили Yandex ML Prize. Один как научный руководитель, в второй как PhD студент с первой топовой публикацией. Заходить в PhD со статьи на Нипсе — это нагло! Я, кстати, тоже начал свою научную карьеру именно со статьи на Нипсе.
@ai_newz
Telegram
Жёлтый AI
Наши чуваки @vkurenkov и @Howuhh выиграли Yandex ML Prize (ex премия Сегаловича)!
Студенты Влада в этом году опубликовали 4 статьи на A* конференциях, за что он выиграл в номинации "Молодые научные руководители". А Саша был одним из этих студентов, поэтому…
Студенты Влада в этом году опубликовали 4 статьи на A* конференциях, за что он выиграл в номинации "Молодые научные руководители". А Саша был одним из этих студентов, поэтому…
This media is not supported in your browser
VIEW IN TELEGRAM
Слежу за прогрессом в работах по теме виртуальной примерки. В канале уже целая серия постов об этом — от ганов до диффузии (гляньте для наглядного сравнения). Ещё я даже сам пробовал демо с виртуальным зеркалом на ICCV 2023.
Если раньше проблема виртуальной примерки казалось почти нерешаемой в адекватном качестве, то сейчас я замечаю, что каждые полгода результаты становятся всё лучше и лучше. Вот на днях Alibaba опубликовали новый метод на основе диффузии.
Загружаешь фото и примеры шмоток, а на выходе получаешь не просто фото в одежде, а целую анимацию!
Демо на HF
Сайт проекта
@ai_newz
Если раньше проблема виртуальной примерки казалось почти нерешаемой в адекватном качестве, то сейчас я замечаю, что каждые полгода результаты становятся всё лучше и лучше. Вот на днях Alibaba опубликовали новый метод на основе диффузии.
Загружаешь фото и примеры шмоток, а на выходе получаешь не просто фото в одежде, а целую анимацию!
Демо на HF
Сайт проекта
@ai_newz
Forwarded from Метаверсошная
Media is too big
VIEW IN TELEGRAM
Так-с, там Эндрю Босворт тех дир Меты, выкатил программный пост с итогами десятилетия.
Что мне показалось интересным:
- ставка очень явно делается на смешанную реальность, а не VR.
У смешанной реальности намного больше юзкейсов, Мета внимательно следит, что люди делают с новым шлемом Квест 3.
7 из 20 лучших приложений к концу года - это приложения смешанной реальности.
- технология ИИ и технология "метаверса" (условно - "воплощенного" интернета, внутри которого мы будем находиться) идут навстречу друг другу. И в какой-то момент соединятся.
- Босворт хочет, чтобы ИИ видел мир нашими глазами (это отсылка к их умным очкам Рэйбан), даже больше - воспринимал мир как мы, люди. И не нуждался в подсказках.
- на основе метовских нейросеток Llama и Llama 2 уже напилено 13 тысяч приложений. Теперь, говорит Босворт, надо принести этот огонь людям (а не только задротам, которые ковыряются с API) и мы уже встраиваем все это добро во всякие инстаграмы.
А главный вопрос - это что нас ждет в следующее десятилетие.
Нужно сформировать видение уже сейчас, чтобы понимать куда нам ехать.
Что мне показалось интересным:
- ставка очень явно делается на смешанную реальность, а не VR.
У смешанной реальности намного больше юзкейсов, Мета внимательно следит, что люди делают с новым шлемом Квест 3.
7 из 20 лучших приложений к концу года - это приложения смешанной реальности.
- технология ИИ и технология "метаверса" (условно - "воплощенного" интернета, внутри которого мы будем находиться) идут навстречу друг другу. И в какой-то момент соединятся.
- Босворт хочет, чтобы ИИ видел мир нашими глазами (это отсылка к их умным очкам Рэйбан), даже больше - воспринимал мир как мы, люди. И не нуждался в подсказках.
- на основе метовских нейросеток Llama и Llama 2 уже напилено 13 тысяч приложений. Теперь, говорит Босворт, надо принести этот огонь людям (а не только задротам, которые ковыряются с API) и мы уже встраиваем все это добро во всякие инстаграмы.
А главный вопрос - это что нас ждет в следующее десятилетие.
Нужно сформировать видение уже сейчас, чтобы понимать куда нам ехать.
This media is not supported in your browser
VIEW IN TELEGRAM
Вы только посмотрите на этого обаятельного 30-летнего молодого человека. Это Джеф Безос, основатель Амазона, показывает первый офис компании в 1994 году. Амазончику тогда было всего несколько месяцев от основания, и только через 3 года он сделает IPO.
Съемку ведет отец Безоса, все действия проходят в гараже. Любопытно, что видео как бы нарочно записывалось, уже зная про безусловный будущий успех компании 📈, чтобы похвастаться через 30 лет, мол, посмотрите с чего я начинал — кабели кругом и бардак на столе.
Все равно видео атмосферное и вдохновляющее, да и Безос там ещё совсем скромный.
@ai_newz
Съемку ведет отец Безоса, все действия проходят в гараже. Любопытно, что видео как бы нарочно записывалось, уже зная про безусловный будущий успех компании 📈, чтобы похвастаться через 30 лет, мол, посмотрите с чего я начинал — кабели кругом и бардак на столе.
Все равно видео атмосферное и вдохновляющее, да и Безос там ещё совсем скромный.
@ai_newz
This media is not supported in your browser
VIEW IN TELEGRAM
🤯Локальные LLM-ки на подъеме — некий Кулибин запуcтил Карпатовскую llama2.c на Galaxy Watch 4!
Моделька не самая жирная, но это пока. Через год-два 1B параметров будет на часах бегать. Персональный ассистент у вас на руке!
Скорость:
Модель с 15M параметров: 22 токенов/сек*
Модель с 43M параметров: 8 токенов/сек
Вот вам еще небольшая подборка моих постов, про локальнные LLM:
- LLaMa с text-retrieval плагином: тык-1, тык-2
- LLama-7B на на макбуке: тык
- LLaMa-30B на макбуке (4-bit + mmap): тык
- llama2.c или Карпатый запускает LLaMa-2-7B на рисоварке: тык
- Falcon 180B дома на маке M2 Ultra: тык
*один токен - это чуть меньше одного слова.
@ai_newz
Моделька не самая жирная, но это пока. Через год-два 1B параметров будет на часах бегать. Персональный ассистент у вас на руке!
Скорость:
Модель с 15M параметров: 22 токенов/сек*
Модель с 43M параметров: 8 токенов/сек
Вот вам еще небольшая подборка моих постов, про локальнные LLM:
- LLaMa с text-retrieval плагином: тык-1, тык-2
- LLama-7B на на макбуке: тык
- LLaMa-30B на макбуке (4-bit + mmap): тык
- llama2.c или Карпатый запускает LLaMa-2-7B на рисоварке: тык
- Falcon 180B дома на маке M2 Ultra: тык
*один токен - это чуть меньше одного слова.
@ai_newz
Решил разобрать детальнее статейку парней из Tinkoff Research — ReBRAC: Revisiting the Minimalist Approach to Offline Reinforcement Learning, которая была опубликована на NeurIPS в этом году.
Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.
Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.
Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.
А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.
После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.
Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.
@ai_newz
Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.
Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.
Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.
А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.
После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.
Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.
@ai_newz
arXiv.org
Revisiting the Minimalist Approach to Offline Reinforcement Learning
Recent years have witnessed significant advancements in offline reinforcement learning (RL), resulting in the development of numerous algorithms with varying degrees of complexity. While these...
Ура! Нас 40 тысяч! 😗 За год канал вырос на 15 тысяч читателей: c 25k до 40k.
Приятно видеть столько умных и заинтересованных в эйай людей вместе. Я, правда, не думал, что на русском языке можно набрать такую большую аудиторию, ведь контент в канале зачастую не самый легкий.
Поделюсь с вами, про мои самые любимые плюшки, которые я как автор обрел благодаря каналу.
1. Теперь, я получаю удовольствие вдвойне при прочтении новой статьи. Во-первых от получения новых знаний, а во-вторых мне радостно делиться информацией с вами и объяснять сложные вещи.
2. Огромное количество новых знакомств, которые принесло ведение канала. Мой нетворк значительно вырос и распространился по всему миру. Иногда поступают очень интересные предложения о коллаборациях и партнерствах либо просто встретиться на кофе в новом городе.
3. Во время нескольких последних поездок на конференции (CVPR, ICCV в этом году) у меня прям здорово получалось наводить движ благодаря комьюнити, которое образовалось вокруг канала. Было приятно знакомиться и общаться с вами! И я, кажется, понял, что мне очень нравится организовывать такие тусы.
В августе я проводил большой опрос читателей. Cкоро поделюсь его результатами и тем, как на базе этого я планирую развивать контент.
Надеюсь, что наше комьюнити будет и дальше активно развиваться! Merry Christmas!🎄
@ai_newz
Приятно видеть столько умных и заинтересованных в эйай людей вместе. Я, правда, не думал, что на русском языке можно набрать такую большую аудиторию, ведь контент в канале зачастую не самый легкий.
Поделюсь с вами, про мои самые любимые плюшки, которые я как автор обрел благодаря каналу.
1. Теперь, я получаю удовольствие вдвойне при прочтении новой статьи. Во-первых от получения новых знаний, а во-вторых мне радостно делиться информацией с вами и объяснять сложные вещи.
2. Огромное количество новых знакомств, которые принесло ведение канала. Мой нетворк значительно вырос и распространился по всему миру. Иногда поступают очень интересные предложения о коллаборациях и партнерствах либо просто встретиться на кофе в новом городе.
3. Во время нескольких последних поездок на конференции (CVPR, ICCV в этом году) у меня прям здорово получалось наводить движ благодаря комьюнити, которое образовалось вокруг канала. Было приятно знакомиться и общаться с вами! И я, кажется, понял, что мне очень нравится организовывать такие тусы.
В августе я проводил большой опрос читателей. Cкоро поделюсь его результатами и тем, как на базе этого я планирую развивать контент.
Надеюсь, что наше комьюнити будет и дальше активно развиваться! Merry Christmas!
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Принес вам 14 книг по Machine Learning для прочтения в 2024 году
Вкатывающимся в ML архиважно иметь структурированную информацию для обучения. Чтобы избежать головокружения от длины списка, советую для начала выбрать по одной книге из каждой секции и вперёд штудировать!
🧠 Фундамент
1. Deep Learning: Foundations and Concepts (Bishop & Bishop, 2023)
2. Deep Learning (Goodfellow, Bengio, Courville, 2016)
3. The Little Book of Deep Learning (Fleuret, 2023). [тык]
4. Mathematics for Machine Learning (Deisenroth, Faisal, Ong, 2020)
5. Probabilistic Machine Learning (Murphy, 2012-2023)
6. Linear Algebra and Learning from Data (Strang, 2019)
💻 Более практические
7. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Géron, 2022)
7. Dive into Deep Learning (Zhang et al., 2023)
9. Designing Machine Learning Systems (Huyen, 2022)
10. Fundamentals of Data Engineering (Reis & Housley, 2022)
🤗 LLM-ки
11. Natural Language Processing with Transformers, Revised Edition (Tunstall, von Werra, Wolf, 2023)
12. Hands-On Large Language Models (Alammar and Grootendorst, 2024 - WIP)
🎉 Генеративный AI
13. Generative Deep Learning, 2nd Edition (Foster, 2023)
14. Hands-On Generative AI with Transformers and Diffusion Models (Cuenca et al., 2024 - WIP)
Многие из книг можно найти в интернете бесплатно. Список, конечно, не исчерпывающий, но довольно вместительный.
Часть списка подготовил мой знакомый из Hugging Face, Omar Sanseviero, а я его дополнил. #книги #books
@ai_newz
Вкатывающимся в ML архиважно иметь структурированную информацию для обучения. Чтобы избежать головокружения от длины списка, советую для начала выбрать по одной книге из каждой секции и вперёд штудировать!
1. Deep Learning: Foundations and Concepts (Bishop & Bishop, 2023)
2. Deep Learning (Goodfellow, Bengio, Courville, 2016)
3. The Little Book of Deep Learning (Fleuret, 2023). [тык]
4. Mathematics for Machine Learning (Deisenroth, Faisal, Ong, 2020)
5. Probabilistic Machine Learning (Murphy, 2012-2023)
6. Linear Algebra and Learning from Data (Strang, 2019)
7. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Géron, 2022)
7. Dive into Deep Learning (Zhang et al., 2023)
9. Designing Machine Learning Systems (Huyen, 2022)
10. Fundamentals of Data Engineering (Reis & Housley, 2022)
🤗 LLM-ки
11. Natural Language Processing with Transformers, Revised Edition (Tunstall, von Werra, Wolf, 2023)
12. Hands-On Large Language Models (Alammar and Grootendorst, 2024 - WIP)
13. Generative Deep Learning, 2nd Edition (Foster, 2023)
14. Hands-On Generative AI with Transformers and Diffusion Models (Cuenca et al., 2024 - WIP)
Многие из книг можно найти в интернете бесплатно. Список, конечно, не исчерпывающий, но довольно вместительный.
Часть списка подготовил мой знакомый из Hugging Face, Omar Sanseviero, а я его дополнил. #книги #books
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Самая мощная LLM в опесорсе, Mixtral 8x7B MoE от Mistral AI, теперь доступна во фреймворке Сandle* - с поддержкой квантизации. За счет квантизации модели могут работать локально на ноутбуке с 32 GB RAM.
Например, 4-битная Mixtral 8x7B MoE занимает всего 26.44GB памяти. Тогда как в bf16 на GPU модель бы заняла 112+ GB VRAM (то есть влезла бы только на H100).
*Candle - это минималистский ML-фреймворк для Rust, сфокусированный на производительности (включая поддержку GPU) и простоте использования.
- Поддерживает 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit int квантизованные модели в gguf and ggml форматах.
- SIMD оптимизации для Apple Silicon и x86.
Вот тут можете попробовать демки разных моделей на Candle:
- Whisper, [пост в канале]
- LLaMa-2, [пост в канале]
- T5,
- YOLOv8,
- Segment Anything [пост в канале]
@ai_newz
Например, 4-битная Mixtral 8x7B MoE занимает всего 26.44GB памяти. Тогда как в bf16 на GPU модель бы заняла 112+ GB VRAM (то есть влезла бы только на H100).
*Candle - это минималистский ML-фреймворк для Rust, сфокусированный на производительности (включая поддержку GPU) и простоте использования.
- Поддерживает 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit int квантизованные модели в gguf and ggml форматах.
- SIMD оптимизации для Apple Silicon и x86.
Вот тут можете попробовать демки разных моделей на Candle:
- Whisper, [пост в канале]
- LLaMa-2, [пост в канале]
- T5,
- YOLOv8,
- Segment Anything [пост в канале]
@ai_newz