🚀 The newly released DeciCoder-6B model is one of the most capable and advanced multi-language code LLMs.
Недавно выпущенная модель DeciCoder-6B - одна из самых способных и продвинутых мультиязычных
Модель DeciCoder-6B демонстрирует исключительное мастерство владения яп, га руовне или превосходя конкурирующие модели в своем классе 🔥
Модель обучена на коде
В бенчмарке
На языке Python DeciCoder лидирует с преимуществом в 3 балла над моделями вдвое большего размера, например StarCoderBase 15.5B!
🚀 HF: https://huggingface.co/Deci/DeciCoder-6B
📚 Blog: https://deci.ai/blog/decicoder-6b-the-best-multi-language-code-generation-llm-in-its-class/
🌟 Colab: https://colab.research.google.com/drive/1QRbuser0rfUiFmQbesQJLXVtBYZOlKpB
@ai_machinelearning_big_data
Недавно выпущенная модель DeciCoder-6B - одна из самых способных и продвинутых мультиязычных
LLM
модели для работы с кодом в классе параметров 7B.Модель DeciCoder-6B демонстрирует исключительное мастерство владения яп, га руовне или превосходя конкурирующие модели в своем классе 🔥
Модель обучена на коде
Python, Java, Javascript, Rust, C++, C и C#
из Starcoder Training Dataset, DeciCoder-6B демонстрирует исключительное мастерство владения этими языками.В бенчмарке
HumanEval
он превосходит такие модели, как CodeGen 2.5 7B и StarCoder 7B, практически на всех поддерживаемых языках. На языке Python DeciCoder лидирует с преимуществом в 3 балла над моделями вдвое большего размера, например StarCoderBase 15.5B!
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18👍6🔥6⚡1
🎉 Stability AI выпустили Stable LM 2 1.6B
Первая языковая модель из новой серии Stable LM 2: базовую модель с 1,6 миллиардами параметров. Базовая модель обучена примерно на 2 триллионах лексем в течение двух эпох и включает в себя многоязычные данные.
Используя последние алгоритмические достижения в области языкового моделирования, удалось найти оптимальный баланс между скоростью и производительностью, что позволило быстро проводить эксперименты и итерации при умеренных затратах.
▪демо: https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr
▪база моделей: https://huggingface.co/stabilityai/stablelm-2-1_6b
▪инструкции: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
@ai_machinelearning_big_data
Первая языковая модель из новой серии Stable LM 2: базовую модель с 1,6 миллиардами параметров. Базовая модель обучена примерно на 2 триллионах лексем в течение двух эпох и включает в себя многоязычные данные.
Используя последние алгоритмические достижения в области языкового моделирования, удалось найти оптимальный баланс между скоростью и производительностью, что позволило быстро проводить эксперименты и итерации при умеренных затратах.
▪демо: https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr
▪база моделей: https://huggingface.co/stabilityai/stablelm-2-1_6b
▪инструкции: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
@ai_machinelearning_big_data
❤24👍13🔥2
Media is too big
VIEW IN TELEGRAM
🤳 Vlogger - система искусственного интеллекта для генерации коротких влогов из текста.
В отличие от коротких видеороликов длительностью в несколько секунд, влог часто содержит сложную сюжетную линию с разнообразными сценами, что является сложной задачей для большинства существующих подходов к созданию видео.
Vlogger может генерировать видео на несколько минут из текста по сценарию без потери связности.
🖥 Code: https://github.com/zhuangshaobin/vlogger
🚀 Colab: github.com/camenduru/Moore-AnimateAnyone-colab
📚 Paper: https://arxiv.org/abs/2401.09414v1
🌟 Dataset: https://paperswithcode.com/dataset/ucf101
@ai_machinelearning_big_data
В отличие от коротких видеороликов длительностью в несколько секунд, влог часто содержит сложную сюжетную линию с разнообразными сценами, что является сложной задачей для большинства существующих подходов к созданию видео.
Vlogger может генерировать видео на несколько минут из текста по сценарию без потери связности.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤6😐5🔥4🍌2🥰1
Инновационный набор инструментов на основе трансформеров для ускорения GenAI/LLM.
pip install intel-extension-for-transformers
#intelai #intelgpu
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16👍12🥰1🍌1
InstantID - новая модель, которая может генерировать индивидуальные изображения с различными позами или стилями на основе одного эталонного изображения без какого-либо обучения!
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤7🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
🔮 Awesome AI Agents
Новый 🌟Кураторский списко AI-агентов🌟!.
▪ 150+ ИИ-агентов и фреймворков.
▪ Фильтр по сценариям использования.
▪ Фильтр по открытому/закрытому исходному коду.
▪ Фильтр новых продуктов ИИ
▪ Возможность получать обновления о конкретном агенте ИИ.
🖥 Github
🎮 Project
@ai_machinelearning_big_data
Новый 🌟Кураторский списко AI-агентов🌟!.
▪ 150+ ИИ-агентов и фреймворков.
▪ Фильтр по сценариям использования.
▪ Фильтр по открытому/закрытому исходному коду.
▪ Фильтр новых продуктов ИИ
▪ Возможность получать обновления о конкретном агенте ИИ.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤17👍11🔥2👾2🎉1
This media is not supported in your browser
VIEW IN TELEGRAM
Большой интерактивный гайд промпт-инжиниринг с Llama 2" - руководство по проектированию промптов с лучшими практиками для разработчиков, исследователей и энтузиастов, работающих с большими языковыми моделями.
https://github.com/facebookresearch/llama-recipes/blob/main/examples/Prompt_Engineering_with_Llama_2.ipynb
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤10🎉6🔥5🎅1
This media is not supported in your browser
VIEW IN TELEGRAM
Monocular depth estimation is the task of estimating the depth value (distance relative to the camera) of each pixel given a single (monocular) RGB image.
Монокулярная оценка глубины - это задача определения значения глубины (расстояния относительно камеры) каждого пикселя по одному (монокулярному) RGB-изображению.
Depth Anything - это новая интересная модель от Университета Гонконга/TikTok, которая берет существующую архитектуру нейронной сети для монокулярной оценки глубины (а именно модель DPT с основой DINOv2) и увеличивает набор данных для обучения на ней.
Авторы разработтали "движок данных" для сбора и автоматического аннотирования масштабных немаркированных данных (~62 миллиона изображений), что значительно расширяет охват данных и позволяет снизить ошибку обобщения.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23👍14🔥9
This media is not supported in your browser
VIEW IN TELEGRAM
Модель, генерации 3D-объектов с помощью передовых алгоритмов (3DGS, NeRF, Differentiable Rendering, SDS/VSD Optimization, и др).
▪ComfyUI-3D-Pack: https://github.com/MrForExample/ComfyUI-3D-Pack
▪TGS: https://github.com/VAST-AI-Research/TriplaneGaussian
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18👍8🔥5🤔3
Media is too big
VIEW IN TELEGRAM
📽 VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models 🔥 Text2Video 📹 Image2Video 🎥 Jupyter Notebook 🥳
VideoCrafter 2 - это обновленный набор инструментов с открытым исходным кодом для создания и редактирования видео высокого качества.
В настоящее время он включает модели Text2Video и Image2Video.
🖥 Code: https://github.com/AILab-CVC/VideoCrafter
🚀 Project: https://ailab-cvc.github.io/videocrafter2/
📚 Paper: https://arxiv.org/abs/2401.09047
🦉 Jupyter: https://github.com/camenduru/VideoCrafter-colab
@ai_machinelearning_big_data
VideoCrafter 2 - это обновленный набор инструментов с открытым исходным кодом для создания и редактирования видео высокого качества.
В настоящее время он включает модели Text2Video и Image2Video.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27❤3❤🔥2🔥2
🎉 Release Code Llama 70B!
Вышла Code Llama 70B: новая, более производительная версия LLM для генерации кода - доступная по той же лицензии, что и предыдущие модели Code Llama.
- Base https://hf.co/codellama/CodeLlama-70b-hf
- Python https://hf.co/codellama/CodeLlama-70b-Python-hf
- Instruct https://hf.co/codellama/CodeLlama-70b-Instruct-hf
CodeLlama-70B-Instruct достигает 67,8 балла в HumanEval, что делает ее одной из самых высокопроизводительных открытых моделей на сегодняшний день.
CodeLlama-70B - это самая производительная база для тонкой настройки моделей генерации кода.
✅ Разрешено коммерческое использование
➡️Скачать модели
@ai_machinelearning_big_data
Вышла Code Llama 70B: новая, более производительная версия LLM для генерации кода - доступная по той же лицензии, что и предыдущие модели Code Llama.
- Base https://hf.co/codellama/CodeLlama-70b-hf
- Python https://hf.co/codellama/CodeLlama-70b-Python-hf
- Instruct https://hf.co/codellama/CodeLlama-70b-Instruct-hf
CodeLlama-70B-Instruct достигает 67,8 балла в HumanEval, что делает ее одной из самых высокопроизводительных открытых моделей на сегодняшний день.
CodeLlama-70B - это самая производительная база для тонкой настройки моделей генерации кода.
✅ Разрешено коммерческое использование
➡️Скачать модели
@ai_machinelearning_big_data
👍35🔥5❤1🥰1😁1💘1
This media is not supported in your browser
VIEW IN TELEGRAM
from a Single Scan
Новый ИИ, который может раздевать 3D модели людей.
GALA может обработать однослойную сетку одетого 3D-человека и разложить ее на полноценные многослойные 3D-объекты.
Полученные результаты могут быть объединены с другими объектов для создания новых одетых человеческих аватаров с любой позой.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥5❤2
This media is not supported in your browser
VIEW IN TELEGRAM
Diffutoon - это новая модель диффузии для преобразования видео в анимационный стиль. Работает с высоким разрешением и быстрыми движениями.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥19😨7❤5
InstructIR принимает на вход изображение и инструкцию по его улучшению. Нейронная сеть выполняет комплексное восстановление и улучшение изображения.
InstructIR достигает передовых результатов в нескольких задачах реставрации, включая обесцвечивание, размытие и улучшение изображения (даже при слабом освещении).
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥9❤4🤓1
⚡️ MoE-LLaVA: Mixture of Experts for Large Vision-Language Models
Новая стратегия обучения MoE-tuning для LVLM, которая позволяет построить модель с огромным количеством параметров, которая эффективно решает проблему снижения производительности, обычно связанную с мультимодальным обучением и разреженностью модели.
Этот фреймворк уникальным образом активирует только топ-к экспертов через маршрутизаторы во время развертывания, оставляя остальных экспертов неактивными.
Обширные эксперименты подчеркивают возможности
Примечательно, что при наличии всего 3 миллиардов редко активируемых параметров MoE-LLaVA демонстрирует производительность, сравнимую с LLaVA-1.5-7B на различных наборах данных для визуального понимания, и даже превосходит LLaVA-1.5-13B в тестах на галлюцинации объектов.
🖥 Code: https://github.com/PKU-YuanGroup/MoE-LLaVA
🚀 Jupyter: https://github.com/camenduru/MoE-LLaVA-jupyter
📚 Paper: https://arxiv.org/abs/2401.15947
@ai_machinelearning_big_data
Новая стратегия обучения MoE-tuning для LVLM, которая позволяет построить модель с огромным количеством параметров, которая эффективно решает проблему снижения производительности, обычно связанную с мультимодальным обучением и разреженностью модели.
Этот фреймворк уникальным образом активирует только топ-к экспертов через маршрутизаторы во время развертывания, оставляя остальных экспертов неактивными.
Обширные эксперименты подчеркивают возможности
MoE-LLaVA
в визуальном понимании и ее потенциал для уменьшения галлюцинаций в результатах моделирования. Примечательно, что при наличии всего 3 миллиардов редко активируемых параметров MoE-LLaVA демонстрирует производительность, сравнимую с LLaVA-1.5-7B на различных наборах данных для визуального понимания, и даже превосходит LLaVA-1.5-13B в тестах на галлюцинации объектов.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24❤5🔥3🎉1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ MotionDirector: Motion Customization of Text-to-Video Diffusion Models
MotionDirector модель генерации текста в видео, для создания видео в движении по указанным инструкциям.
🖥 Github: https://github.com/showlab/MotionDirector
📕 Paper: https://arxiv.org/abs/2310.08465
⭐️ Project: showlab.github.io/MotionDirector/
ai_machinelearning_big_data
MotionDirector модель генерации текста в видео, для создания видео в движении по указанным инструкциям.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Простая и практичная библиотека на Python для CMA-ES.
Стратегия эволюции адаптации ковариационной матрицы (CMA-ES) - это особый вид стратегии для численной оптимизации .
Стратегии развития (ES) - это стохастические , методы без производных для числовой оптимизации не- линейной или не выпуклые задачи непрерывной оптимизации .
Они принадлежат к классу эволюционных алгоритмов и эволюционных вычислений . эволюционный алгоритм в целом основан на принципе биологической эволюции , а именно на повторяющемся взаимодействии вариаций (посредством рекомбинации и мутации) и отбора: в каждом поколении (итерации) новые особи (кандидаты решения, обозначенные как ), генерируются путем изменения, обычно стохастическим образом, текущих родительских особей.
$ pip install cmaes
import numpy as np
from cmaes import CMA
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
if __name__ == "__main__":
optimizer = CMA(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
optimizer.tell(solutions)
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24❤5🔥5😢1🎉1