This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ 7 самых важных релизов недели из мира ИИ:
Это была важная неделя для мира ИИ: анонсы от
1. Исследователи Alibaba представили EMO - ИИ, который качетсвенно анимирует статическое изображение человека с синхронизацей движения губ и лица.
2. Компания Lightricks представила LTX Studio - студию для создания фильмов с помощью ИИ.
Новинка позволяет креативщикам автоматически генерировать сценарии, редактируемые раскадровки и короткие видеоклипы.
Создание видео с помощью искусственного интеллекта становится все более продвинутым с каждым днем.
3. Компания Ideogram выпустила новую версию своей модели преобразования текста в изображение.
В первую очередь, это невероятная детализация текста, сгенерированного искусственным интеллектом и новая функция
4. Apple незаметно анонсировала ИИ обновления для iOS.
Судя по тому, как продвигаются исследования в области ИИ, скоро мы увидим крупное обновление ИИ для Siri.
Возможно, это будет следующий "ChatGPT" от Apple.
5. Компания Klarna только что опубликовала блог, в котором говорится, что с помощью искусственного интеллекта они заменят 700 сотрудников службы поддержки клиентов.
Сумасшедшая статистика:
- За последний месяц чатбот обработал 2,3 млн разговоров.
- Среднее время решения проблемы сократилось на 9 минут
- 40 млн долларов дополнительной прибыли в 2024 году
6. Adobe выпустила Project Music GenAI Control.
Этот инструмент, названный "музыкальным фотошопом", позволяет легко генерировать и редактировать аудио с помощью искусственного интеллекта, позволяя авторам создавать собственные музыкальные треки с помощью текстовых промптов.
7. Компания Pika Labs представила новую функцию синхронизации губ в своем генераторе видео с искусственным интеллектом.
Новая технология позволяет создавать крайне реалистичноные анимации на базе ElevenLabs.
ai_machinelearning_big_data
Это была важная неделя для мира ИИ: анонсы от
Alibaba, Lightricks, Ideogram, Apple, Adobe, OpenAI
и многих других.1. Исследователи Alibaba представили EMO - ИИ, который качетсвенно анимирует статическое изображение человека с синхронизацей движения губ и лица.
2. Компания Lightricks представила LTX Studio - студию для создания фильмов с помощью ИИ.
Новинка позволяет креативщикам автоматически генерировать сценарии, редактируемые раскадровки и короткие видеоклипы.
Создание видео с помощью искусственного интеллекта становится все более продвинутым с каждым днем.
3. Компания Ideogram выпустила новую версию своей модели преобразования текста в изображение.
В первую очередь, это невероятная детализация текста, сгенерированного искусственным интеллектом и новая функция
Magic Prompt,
кооораяп
одскажет, как их написать и получить максимально качественный результат.4. Apple незаметно анонсировала ИИ обновления для iOS.
Судя по тому, как продвигаются исследования в области ИИ, скоро мы увидим крупное обновление ИИ для Siri.
Возможно, это будет следующий "ChatGPT" от Apple.
5. Компания Klarna только что опубликовала блог, в котором говорится, что с помощью искусственного интеллекта они заменят 700 сотрудников службы поддержки клиентов.
Сумасшедшая статистика:
- За последний месяц чатбот обработал 2,3 млн разговоров.
- Среднее время решения проблемы сократилось на 9 минут
- 40 млн долларов дополнительной прибыли в 2024 году
6. Adobe выпустила Project Music GenAI Control.
Этот инструмент, названный "музыкальным фотошопом", позволяет легко генерировать и редактировать аудио с помощью искусственного интеллекта, позволяя авторам создавать собственные музыкальные треки с помощью текстовых промптов.
7. Компания Pika Labs представила новую функцию синхронизации губ в своем генераторе видео с искусственным интеллектом.
Новая технология позволяет создавать крайне реалистичноные анимации на базе ElevenLabs.
ai_machinelearning_big_data
👍35❤9🔥3🥰1😱1🍌1
🎓 OS-Copilot: Towards Generalist Computer Agents with Self-Improvement
Самосовершенствующийся диалоговый агент, который интегрируется в операционную систему для автоматизации повседневных задач.
OS-Copilot - это новаторская основа для создания универсальных компьютерных агентов, которая обеспечивает единый интерфейс для взаимодействия приложений в экосистеме ОС.
Самосовершенствующийся помощник с искусственным интеллектом, способного решать общие компьютерные задачи.
Агент может взаимодействовать со всеми элементами операционной системы (ОС), включая работу в сети, написание кода, работу с файлами и мультимедиа, работу различными сторонними приложениями.
▪Github
▪Project
▪Статья
ai_machinelearning_big_data
Самосовершенствующийся диалоговый агент, который интегрируется в операционную систему для автоматизации повседневных задач.
OS-Copilot - это новаторская основа для создания универсальных компьютерных агентов, которая обеспечивает единый интерфейс для взаимодействия приложений в экосистеме ОС.
Самосовершенствующийся помощник с искусственным интеллектом, способного решать общие компьютерные задачи.
Агент может взаимодействовать со всеми элементами операционной системы (ОС), включая работу в сети, написание кода, работу с файлами и мультимедиа, работу различными сторонними приложениями.
▪Github
▪Project
▪Статья
ai_machinelearning_big_data
👍30❤5🔥2
Media is too big
VIEW IN TELEGRAM
OpenCodeInterpreter — семейство моделей с открытым исходным кодом, предназначенных для генерации, выполнения и итеративного уточнения кода.
OpenCodeInterpreter, поддерживаемый Code-Feedback, набором данных, включающим 68 тыс. многошаговых взаимодействий, объединяет выполнение и обратную связь с человеком для уточнения кода.
Оценка OpenCodeInterpreter в таких тестах, как HumanEval, MBPP показывает его исключительную производительность с точностью 83,2 (76,4) в среднем (и в плюс версии), что близко к точности GPT-4 — 84,2 (76,2).
При этом точность может быть повышена до 91,6 (84,6).
🔗 Описание и сами модели OpenCodeInterpreter
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥5❤3🤔1🤣1
🧬 Evo: DNA foundation modeling from molecular to genome scale
Эволюция геномного проектирования: роль нейросетей в биологической революции.
Ученые достигли значительного прорыва в биологии с разработкой нейросети Evo-1, которая способна моделировать ДНК, РНК и белки.
Этот инновационный продукт открывает новые горизонты в моделировании биологических последовательностей на различных масштабах, начиная от молекулярного уровня и до полногеномного анализа.
Искусственный интеллект Evo-1 обладает огромным потенциалом для создания новых модификаций CRISPR, предназначенных для лечения различных заболеваний. Эта технология также позволяет создавать материалы с заданными свойствами и тестировать гены в симуляциях, что в свою очередь значительно ускоряет научные исследования и открывает новые перспективы в области генетики.
Одним из ключевых преимуществ Evo-1 является его способность оперативно анализировать генетические последовательности и предсказывать их влияние на организм. Это делает нейросеть эффективным инструментом для исследований в области медицины, агропромышленности и биотехнологий.
Благодаря Evo-1 значительно расширяются возможности генетического проектирования и манипулирования ДНК. Ученые могут более точно изучать структуру генома различных организмов, выявлять гены, ответственные за конкретные болезни, и разрабатывать индивидуализированные подходы к лечению.
Таким образом, нейросеть Evo-1 представляет собой значительный шаг вперед в области генетического инжиниринга и биомедицины. Ее использование обещает революционизировать множество областей науки и привнести новые возможности в борьбе с генетическими заболеваниями и создании инновационных биологических материалов.
🖥 GitHub
@ai_machinelearning_big_data
Эволюция геномного проектирования: роль нейросетей в биологической революции.
Ученые достигли значительного прорыва в биологии с разработкой нейросети Evo-1, которая способна моделировать ДНК, РНК и белки.
Этот инновационный продукт открывает новые горизонты в моделировании биологических последовательностей на различных масштабах, начиная от молекулярного уровня и до полногеномного анализа.
Искусственный интеллект Evo-1 обладает огромным потенциалом для создания новых модификаций CRISPR, предназначенных для лечения различных заболеваний. Эта технология также позволяет создавать материалы с заданными свойствами и тестировать гены в симуляциях, что в свою очередь значительно ускоряет научные исследования и открывает новые перспективы в области генетики.
Одним из ключевых преимуществ Evo-1 является его способность оперативно анализировать генетические последовательности и предсказывать их влияние на организм. Это делает нейросеть эффективным инструментом для исследований в области медицины, агропромышленности и биотехнологий.
Благодаря Evo-1 значительно расширяются возможности генетического проектирования и манипулирования ДНК. Ученые могут более точно изучать структуру генома различных организмов, выявлять гены, ответственные за конкретные болезни, и разрабатывать индивидуализированные подходы к лечению.
Таким образом, нейросеть Evo-1 представляет собой значительный шаг вперед в области генетического инжиниринга и биомедицины. Ее использование обещает революционизировать множество областей науки и привнести новые возможности в борьбе с генетическими заболеваниями и создании инновационных биологических материалов.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥32👍16❤7
📹 ML-инженер Яндекса рассказал, как в Браузер встроили модель YandexGPT, которая умеет пересказывать видео
В статье на Хабре объяснили, почему суммаризация статей не то же самое, что суммаризация видео, как научить YandexGPT пересказывать даже очень длинные видео, и сравнили подходы p-tune, LoRa и fine-tune.
ai_machinelearning_big_data
В статье на Хабре объяснили, почему суммаризация статей не то же самое, что суммаризация видео, как научить YandexGPT пересказывать даже очень длинные видео, и сравнили подходы p-tune, LoRa и fine-tune.
ai_machinelearning_big_data
❤18🔥8🥰2👍1😁1
🖼 Differential Diffusion: Giving Each Pixel Its Strength 🔥
Новый фреймворк, который позволяет настраивать количество изменений на сгенерированных изображениях на пиксель или на область изображения.
Фреймворк может быть интегрирован в любую существующую модель генерация, расширяя ее за счет этой возможности.
Такой детальный контроль количества изменений открывает широкий спектр новых возможностей редактирования, таких как контроль степени модификации отдельных объектов или возможность вносить постепенные пространственные изменения.
Фремворк не требует обучения или тонкой настройки.
▪code: github.com/exx8/differential-diffusion
▪page: differential-diffusion.github.io
▪paper: arxiv.org/abs/2306.00950
ai_machinelearning_big_data
Новый фреймворк, который позволяет настраивать количество изменений на сгенерированных изображениях на пиксель или на область изображения.
Фреймворк может быть интегрирован в любую существующую модель генерация, расширяя ее за счет этой возможности.
Такой детальный контроль количества изменений открывает широкий спектр новых возможностей редактирования, таких как контроль степени модификации отдельных объектов или возможность вносить постепенные пространственные изменения.
Фремворк не требует обучения или тонкой настройки.
▪code: github.com/exx8/differential-diffusion
▪page: differential-diffusion.github.io
▪paper: arxiv.org/abs/2306.00950
ai_machinelearning_big_data
🔥26👍8❤2
🔥 SOTA: Stable Diffusion 3:вышла! 🔥
Stable Diffusion 3 - это новая технология преобразования текста в изображение SOTA.
Новая архитектура Multimodal Diffusion Transformer (MM Bit) использует отдельные наборы весов для изображений и языка, улучшая возможности понимания текста / правописания.
✅ Новая масштабируемая архитектура для синтеза текста в изображение
✅ Двунаправленное смешивание потоков токенов текста и изображений
✅ Самые крупные модели превосходят открытые модели SOTA, такие как SDXL
▪Blog: https://stability.ai/news/stable-diffusion-3-research-paper
▪ Paper: https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf
ai_machinelearning_big_data
Stable Diffusion 3 - это новая технология преобразования текста в изображение SOTA.
Новая архитектура Multimodal Diffusion Transformer (MM Bit) использует отдельные наборы весов для изображений и языка, улучшая возможности понимания текста / правописания.
✅ Новая масштабируемая архитектура для синтеза текста в изображение
✅ Двунаправленное смешивание потоков токенов текста и изображений
✅ Самые крупные модели превосходят открытые модели SOTA, такие как SDXL
▪Blog: https://stability.ai/news/stable-diffusion-3-research-paper
▪ Paper: https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf
ai_machinelearning_big_data
👍32🔥8❤5🎉1🥴1
This media is not supported in your browser
VIEW IN TELEGRAM
Состоялся релиз Supermaven — нейросети для генерации кода с контекстным окном 300 тыс. токенов
Разработчики выпустили ИИ-генератор кода Supermaven с контекстным окном 300 тыс. токенов. Это в разы больше, чем возможности GitHub Copilot. Supermaven обучили с нуля, а не адаптировали уже готовое решение.
Представители Supermaven отмечают, что разработчики всё чаще начинают использовать ИИ-генераторы кода на ежедневной основе. Из-за популярности подобных инструментов большие компании пытаются сократить расходы на обслуживании нейросетей, ограничивая контекстное окно. При этом чем больше контекстное окно, тем больше кода за один раз может обработать языковая модель. Поэтому компаниям приходится искать баланс между экономией и удобством для пользователей.
Supermaven разработала и обучила нейросеть на новой архитектуре с контекстным окном в 300 тыс. токенов. При этом сохраняется высокая скорость, а такое масштабное увеличение контекста не сказывается отрицательно на стоимости обслуживания модели в облаке. Для сравнения, Microsoft недавно увеличила контекстное окно Copilot до 8192 токенов.
Возможности Supermaven позволяют языковой модели за 10-20 секунд проанализировать репозиторий, включающий в себя кодовую базу продукта, методы API, документацию и стайлгайды. С помощью этой информации нейросеть будет генерировать не просто работающий код, но и идеально вписывающийся в проект. В блоге Supermaven отмечают, что GitHub Copilot генерирует качественный код только с теми API и библиотеками, которые находились в датасете.
Сейчас Supermaven доступен в виде расширения для VS Code и поддерживает более 70 языков программирования. ИИ-помощник работает по подписке, которую можно оформить за 10 долларов в месяц или 99 в год. Можно активировать пробный период на 30 дней.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30🔥8❤3
⚡️ ResAdapter: Domain Consistent Resolution Adapter for Diffusion Models
Новый фреймворк предназначенный для диффузионных моделей (например, SD) для создания изображений с любым разрешением и соотношением сторон. В отличие от других методов генерации с заданным разрешениями, которые обрабатывают изображения с последующей обработкой, ResAdapter напрямую генерирует изображения с заданным разрешением.
▪page: https://res-adapter.github.io
▪paper: https://arxiv.org/abs/2403.02084
▪code: https://github.com/bytedance/res-adapter
ai_machinelearning_big_data
Новый фреймворк предназначенный для диффузионных моделей (например, SD) для создания изображений с любым разрешением и соотношением сторон. В отличие от других методов генерации с заданным разрешениями, которые обрабатывают изображения с последующей обработкой, ResAdapter напрямую генерирует изображения с заданным разрешением.
▪page: https://res-adapter.github.io
▪paper: https://arxiv.org/abs/2403.02084
▪code: https://github.com/bytedance/res-adapter
ai_machinelearning_big_data
👍13🔥7❤2❤🔥1