🔍 Advancing computer vision research with new Detectron2 Mask R-CNN baselines
Facebook Ai: https://ai.facebook.com/blog/advancing-computer-vision-research-with-new-detectron2-mask-r-cnn-baselines/
Code: https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md#new-baselines-using-large-scale-jitter-and-longer-training-schedule
Tensorflow implementation: https://github.com/tensorflow/tpu/tree/master/models/official/detectiona
@ai_machinelearning_big_data
Facebook Ai: https://ai.facebook.com/blog/advancing-computer-vision-research-with-new-detectron2-mask-r-cnn-baselines/
Code: https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md#new-baselines-using-large-scale-jitter-and-longer-training-schedule
Tensorflow implementation: https://github.com/tensorflow/tpu/tree/master/models/official/detectiona
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
📘 D2L.ai: Interactive Deep Learning Book with Multi-Framework Code, Math, and Discussions
Github: https://github.com/d2l-ai/d2l-en
Book: https://d2l.ai/
Paper: https://arxiv.org/abs/2106.11342v1
@ai_machinelearning_big_data
Github: https://github.com/d2l-ai/d2l-en
Book: https://d2l.ai/
Paper: https://arxiv.org/abs/2106.11342v1
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation
Github: https://github.com/happy-jihye/Cartoon-StyleGan2
Paper: https://arxiv.org/abs/2106.12445
Colab: https://colab.research.google.com/github/happy-jihye/Cartoon-StyleGan2/blob/main/Cartoon_StyleGAN2.ipynb
@ai_machinelearning_big_data
Github: https://github.com/happy-jihye/Cartoon-StyleGan2
Paper: https://arxiv.org/abs/2106.12445
Colab: https://colab.research.google.com/github/happy-jihye/Cartoon-StyleGan2/blob/main/Cartoon_StyleGAN2.ipynb
@ai_machinelearning_big_data
🔺 Pyramid Vision Transformer
Image classification, object detection, and semantic segmentation tasks
Github: https://github.com/whai362/PVT
Paper: https://arxiv.org/abs/2106.13797v2
@ai_machinelearning_big_data
Image classification, object detection, and semantic segmentation tasks
Github: https://github.com/whai362/PVT
Paper: https://arxiv.org/abs/2106.13797v2
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🔎 Microsoft AutoML - Neural Architecture Search
New one-shot architecture search framework dedicated to vision transformer search
Github: https://github.com/microsoft/AutoML
Paper: https://arxiv.org/abs/2107.00651v1
Models: https://drive.google.com/drive/folders/1NLGAbBF9bA1IUAxKlk2VjgRXhr6RHvRW
Dataset: https://paperswithcode.com/dataset/cifar-10
@ai_machinelearning_big_data
New one-shot architecture search framework dedicated to vision transformer search
Github: https://github.com/microsoft/AutoML
Paper: https://arxiv.org/abs/2107.00651v1
Models: https://drive.google.com/drive/folders/1NLGAbBF9bA1IUAxKlk2VjgRXhr6RHvRW
Dataset: https://paperswithcode.com/dataset/cifar-10
@ai_machinelearning_big_data
🚀 TensorFlow and PyTorch performance benchmarking in 2021
Habr: https://habr.com/ru/company/ru_mts/blog/565456/
Github: https://github.com/Chifffa/tf_vs_torch_benchmarking
@ai_machinelearning_big_data
Habr: https://habr.com/ru/company/ru_mts/blog/565456/
Github: https://github.com/Chifffa/tf_vs_torch_benchmarking
@ai_machinelearning_big_data
🔝 Learning Hierarchical Graph Neural Networks for Image Clustering
Github: https://github.com/dmlc/dgl/tree/master/examples/pytorch/hilander
Paper: https://arxiv.org/abs/2107.01319
Datasets: https://drive.google.com/file/d/1KLa3uu9ndaCc7YjnSVRLHpcJVMSz868v/view
@ai_machinelearning_big_data
Github: https://github.com/dmlc/dgl/tree/master/examples/pytorch/hilander
Paper: https://arxiv.org/abs/2107.01319
Datasets: https://drive.google.com/file/d/1KLa3uu9ndaCc7YjnSVRLHpcJVMSz868v/view
@ai_machinelearning_big_data
🔥1
🌐 Depth-supervised NeRF: Fewer Views and Faster Training for Free
Github: https://github.com/dunbar12138/DSNeRF
Paper: https://arxiv.org/abs/2107.02791v1
Project: https://www.cs.cmu.edu/~dsnerf/
Datasets: https://paperswithcode.com/dataset/3dmatch
@ai_machinelearning_big_data
Github: https://github.com/dunbar12138/DSNeRF
Paper: https://arxiv.org/abs/2107.02791v1
Project: https://www.cs.cmu.edu/~dsnerf/
Datasets: https://paperswithcode.com/dataset/3dmatch
@ai_machinelearning_big_data
↔️ Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation
Github: https://github.com/Elvinky/IEGAN
Paper: https://arxiv.org/abs/2107.02494
Datasets: https://github.com/Elvinky/IEGAN/tree/main/dataset
Image-to-Image Translation: https://paperswithcode.com/task/image-to-image-translation
@ai_machinelearning_big_data
Github: https://github.com/Elvinky/IEGAN
Paper: https://arxiv.org/abs/2107.02494
Datasets: https://github.com/Elvinky/IEGAN/tree/main/dataset
Image-to-Image Translation: https://paperswithcode.com/task/image-to-image-translation
@ai_machinelearning_big_data
📐 Googl's Measuring and Improving Model-Moderator Collaboration using Uncertainty Estimation
Providing high-quality implementations of standard and state-of-the-art methods on standard tasks.
Github: https://github.com/google/uncertainty-baselines
Paper: https://arxiv.org/abs/2107.04212v1
Dataset: https://www.tensorflow.org/datasets
@ai_machinelearning_big_data
Providing high-quality implementations of standard and state-of-the-art methods on standard tasks.
Github: https://github.com/google/uncertainty-baselines
Paper: https://arxiv.org/abs/2107.04212v1
Dataset: https://www.tensorflow.org/datasets
@ai_machinelearning_big_data
GitHub
GitHub - google/uncertainty-baselines: High-quality implementations of standard and SOTA methods on a variety of tasks.
High-quality implementations of standard and SOTA methods on a variety of tasks. - google/uncertainty-baselines
This media is not supported in your browser
VIEW IN TELEGRAM
⚛
Highly accurate protein structure prediction with AlphaFoldhttps://deepmind.com/blog/article/putting-the-power-of-alphafold-into-the-worlds-hands
Github: https://github.com/deepmind/alphafold
Paper: https://doi.org/10.1038/s41586-021-03819-2
@ai_machinelearning_big_data
👨🎓 From economists to data scientists or how to become the leader of the Kaggle Notebooks rating
Habr: https://habr.com/ru/company/ru_mts/blog/567678/
Exploration of data step by step: https://www.kaggle.com/artgor/exploration-of-data-step-by-step
@ai_machinelearning_big_data
Habr: https://habr.com/ru/company/ru_mts/blog/567678/
Exploration of data step by step: https://www.kaggle.com/artgor/exploration-of-data-step-by-step
@ai_machinelearning_big_data
📖 GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior
Github: https://github.com/TencentARC/GFPGAN
Paper: https://arxiv.org/abs/2101.04061v2
Dataset: https://paperswithcode.com/dataset/lfw
Colab Demo: https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo
@ai_machinelearning_big_data
Github: https://github.com/TencentARC/GFPGAN
Paper: https://arxiv.org/abs/2101.04061v2
Dataset: https://paperswithcode.com/dataset/lfw
Colab Demo: https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo
@ai_machinelearning_big_data
🐍 PyTorch Fundamentals Free Microsoft Course
https://docs.microsoft.com/en-us/learn/paths/pytorch-fundamentals/
Ru: https://docs.microsoft.com/ru-ru/learn/paths/pytorch-fundamentals/
Github: https://github.com/pytorch/tutorials
@ai_machinelearning_big_data
https://docs.microsoft.com/en-us/learn/paths/pytorch-fundamentals/
Ru: https://docs.microsoft.com/ru-ru/learn/paths/pytorch-fundamentals/
Github: https://github.com/pytorch/tutorials
@ai_machinelearning_big_data
🔝 Deepmind's WikiGraphs: A Wikipedia Text - Knowledge Graph Paired Dataset
This package provides tools to download the WikiGraphs dataset
Github: https://github.com/deepmind/deepmind-research/tree/master/wikigraphs
Paper: https://arxiv.org/abs/2107.09556v1
Dataset: https://paperswithcode.com/dataset/wikigraphs
@ai_machinelearning_big_data
This package provides tools to download the WikiGraphs dataset
Github: https://github.com/deepmind/deepmind-research/tree/master/wikigraphs
Paper: https://arxiv.org/abs/2107.09556v1
Dataset: https://paperswithcode.com/dataset/wikigraphs
@ai_machinelearning_big_data
Best machine learning tutorials: https://t.iss.one/datascienceiot
Usufull python resourses: @pythonl
Artificial intelligence articles: @ArtificialIntelligencedl
Machine learning RU: https://t.iss.one/machinelearning_ru
ML chat: https://t.iss.one/machinee_learning
Free python books: https://t.iss.one/pythonlbooks
Usufull python resourses: @pythonl
Artificial intelligence articles: @ArtificialIntelligencedl
Machine learning RU: https://t.iss.one/machinelearning_ru
ML chat: https://t.iss.one/machinee_learning
Free python books: https://t.iss.one/pythonlbooks
🌀 CycleMLP: A MLP-like Architecture for Dense Prediction
Github: https://github.com/ShoufaChen/CycleMLP
Paper: https://arxiv.org/abs/2107.10224
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
Github: https://github.com/ShoufaChen/CycleMLP
Paper: https://arxiv.org/abs/2107.10224
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
Тут у Яндекса интересная новость. Компания запускает соревнование для исследователей в области машинного обучения в рамках крупнейшей конференции MLщиков в мире - NeurIPS 2021. Вместе с учеными Оксфорда и Кембриджа предлагают участникам посоревноваться в разработке алгоритмов и их обучении для погоды, машинного перевода текстов и предсказания поведения участников автомобильного движения. Основной задачей будет проверить эффективность этих алгоритмов при сдвиге данных.
Для соревнования Яндекс открыл доступ к собственному датасету, который считается самым большим в мире по беспилотным автомобилям. Еще поделятся реальными данными Я.Погоды и Я.Переводчика. Это данные из сервисов, которые много лет работают в реальном мире, используются в различных сценариях, и уже проходили испытание сдвигом данных.
Полученные решения можно будет применять в разных отраслях, которые сталкиваются со сдвигом данных. Крутая инициатива!
https://research.yandex.com/shifts
Для соревнования Яндекс открыл доступ к собственному датасету, который считается самым большим в мире по беспилотным автомобилям. Еще поделятся реальными данными Я.Погоды и Я.Переводчика. Это данные из сервисов, которые много лет работают в реальном мире, используются в различных сценариях, и уже проходили испытание сдвигом данных.
Полученные решения можно будет применять в разных отраслях, которые сталкиваются со сдвигом данных. Крутая инициатива!
https://research.yandex.com/shifts
Shifts Challenge: Robustness and Uncertainty under Real-World Distributional Shift
We invite researchers and machine learning practitioners from all over the world to participate in our NeurIPS 2021 Shifts Challenge on robustness and uncertainty under real-world distributional shift.
https://t.iss.one/Golang_google - golang channel
https://t.iss.one/javascriptv - javascript tutorials
https://t.iss.one/memes_prog - it memes
https://t.iss.one/pro_python_code - python ru
https://t.iss.one/htmlcssjavas - web development
https://t.iss.one/csharp_ci - c sharp
https://t.iss.one/linuxkalii - kali linux
https://t.iss.one/javascriptv - javascript tutorials
https://t.iss.one/memes_prog - it memes
https://t.iss.one/pro_python_code - python ru
https://t.iss.one/htmlcssjavas - web development
https://t.iss.one/csharp_ci - c sharp
https://t.iss.one/linuxkalii - kali linux