360K subscribers
4.33K photos
816 videos
17 files
4.81K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Multi-scale Interactive Network for Salient Object Detection.


Github: https://github.com/lartpang/MINet

Paper: https://arxiv.org/abs/2007.09062v1

Results & Pretrained Parameters: https://drive.google.com/drive/folders/16yTcf_m-ehnhWgXlN6hbZpBKMy6lYIQQ
This media is not supported in your browser
VIEW IN TELEGRAM
SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation


Github: https://github.com/JialeCao001/SipMask

Paper: https://arxiv.org/abs/2007.14772v1

@ai_machinelearning_big_data
On the Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators

The Tsetlin Machine solves complex pattern recognition problems with easy-to-interpret propositional formulas.

Github: https://github.com/cair/TsetlinMachine

Paper: https://arxiv.org/abs/2007.14268v1
This media is not supported in your browser
VIEW IN TELEGRAM
Netflix’s Polynote is a New Open Source Framework to Build Better Data Science Notebooks

Polynote is an experimental polyglot notebook environment. Currently, it supports Scala and Python, SQL, and Vega.

https://www.kdnuggets.com/2020/08/netflix-polynote-open-source-framework-better-data-science-notebooks.html

Project page: https://polynote.org/

Github: https://github.com/polynote/polynote

@ai_machinelearning_big_data
DeText: A Deep Neural Text Understanding Framework

DeText can be applied to many tasks, including search & recommendation ranking, multi-class classification and query understanding tasks.

Github: https://github.com/linkedin/detext

Paper: https://arxiv.org/abs/2008.02460v1

@ai_machinelearning_big_data
Layerwise learning for Quantum Neural Networks

Training strategy that addresses vanishing gradients in quantum neural networks (QNNs).

https://blog.tensorflow.org/2020/08/layerwise-learning-for-quantum-neural-networks.html

Quirk: a drag-and-drop quantum circuit simulator with nice visualizations: https://algassert.com/quirk

Paper: https://arxiv.org/abs/2003.02989

Quantum Intuition:https://www.youtube.com/channel/UC-2knDbf4kzT3uzWo7iTJyw

@ai_machinelearning_big_data
👍1