335K subscribers
4.13K photos
753 videos
17 files
4.66K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Neural Networks from Scratch - Coding a Layer

A beginner’s guide to understanding the inner workings of Deep Learning

https://morioh.com/p/fb1b9f5a52bc

Video Part 1: https://www.youtube.com/watch?v=Wo5dMEP_BbI

Video Part 2: https://www.youtube.com/watch?v=lGLto9Xd7bU
Transform and Tell: Entity-Aware News Image Captioning

End-to-end model which generates captions for images embedded in news articles.

Github: https://github.com/alasdairtran/transform-and-tell

Demo: https://transform-and-tell.ml/

Paper: https://arxiv.org/abs/2004.08070
Today, on April 22 is Earth day. It’s a right time to look at the climate issues in terms of data storage.
* 90% of all data was created in the last two years
* IoT, Big Data and AI are huge data creators
* 70% of all data stored is copy data2
* 70-80% of data is typically unstructured * 2018 HDD shipments = 869Eb
* 2023 HDD shipments = 2.6Zb
* In a normal DC, 1 watt of HDD consumption = 1 watt of cooling

What can everyone do for the ecology of our planet?

* Migrate suitable workloads to the cloud
* Collect, process and store less data; archive more to reduce carbon storage
* Use backup/archive instead of big data
* Leverage copy management tools
* If you must keep data for longer, use tape or cloud tape

Software solutions for backup, managing and recovering data help to move your data to the cloud and so you can take care of the environment. Commvault - leading experts in software-defined storage. Over 11 Exabytes of customer data are under Commvault management.
ResNeSt: Split-Attention Networks

Split-Attention Network, A New ResNet Variant. It significantly boosts the performance of downstream models such as Mask R-CNN, Cascade R-CNN and DeepLabV3.

Github: https://github.com/zhanghang1989/ResNeSt#pretrained-models

Paper: https://arxiv.org/abs/2004.08955v1
The Illustrated GPT-2 (Visualizing Transformer Language Models)

Visual explaining the inner-workings of transformers, and how they’ve evolved since the original paper

https://jalammar.github.io/illustrated-gpt2/

Habr ru: https://habr.com/ru/post/490842/

OpenAI Implementation: https://github.com/openai/gpt-2
Training with quantization noise for extreme model compression

Quant-Noise is a new technique to enable extreme compression of models that still deliver high performance when deployed in practical applications.

https://ai.facebook.com/blog/training-with-quantization-noise-for-extreme-model-compression/

Paper: https://arxiv.org/abs/2004.07320

GitHub: https://github.com/pytorch/fairseq/tree/master/examples/quant_noise
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation

Easy and efficient method to extend existing sentence embedding models to new languages. This allows to create multilingual versions from previously monolingual models.

Code: https://github.com/UKPLab/sentence-transformers

Paper: https://arxiv.org/abs/2004.09813v1
This media is not supported in your browser
VIEW IN TELEGRAM
🦑 Нейроэволюция киберкальмаров

Для создания нейронных сетей, обеспечивающих поведение без обучения, можно использовать нейроэволюцию. Эволюционные алгоритмы (например, такой, который я использовал для выполнения эволюции растений) подвергают генетический код эволюции в течение долгого периода времени. Генетический код (модель для ДНК) и представляемый им организм изначально очень просты, но в течение многих поколений небольшие мутации увеличивают благоприятную сложность и добавляют функции, стимулирующие дальнейшее распространение этих свойств.

Цифровые кальмары

Чтобы продемонстрировать действие нейроэволюции, я хочу подвергнуть эволюции цифровых кальмаров. Кальмары обладают следующими свойствами:

➡️ Читать дальше :
🔩 Код из статьи

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Measuring Information Propagation in Literary Social Network

Annotated dataset of 100 works of fiction to support tasks in natural language processing and the computational humanities.

Code: https://github.com/dbamman/litbank

Paper: https://arxiv.org/pdf/2004.13980v1.pdf
This media is not supported in your browser
VIEW IN TELEGRAM
NUBIA (NeUral Based Interchangeability Assessor) is a new SoTA evaluation metric for text generation

Methodology to build automatic evaluation metrics for text generation using only machine learning models as core components

https://wl-research.github.io/blog/

Github: https://github.com/wl-research/nubia

Paper: https://arxiv.org/abs/2004.14667v1

Colab: https://colab.research.google.com/drive/1_K8pOB8fRRnkBPwlcmvUNHgCr4ur8rFg
This media is not supported in your browser
VIEW IN TELEGRAM
An Implementation of ERNIE For Language Understanding (including Pre-training models and Fine-tuning tools)

ERNIE 2.0 is a continual pre-training framework for language understanding in which pre-training tasks can be incrementally built and learned through multi-task learning.

ERNIE 2.0 from Baidu: https://github.com/PaddlePaddle/ERNIE

Dataset: https://gluebenchmark.com/tasks

Understanding Language using XLNet with autoregressive pre-training

https://medium.com/@zxiao2015/understanding-language-using-xlnet-with-autoregressive-pre-training-9c86e5bea443