223K subscribers
3.83K photos
640 videos
17 files
4.46K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✔️ ttt-rl (Tic-Tac-Toe Reinforcement Learning)

🎯 Суть проекта
Это эксперимент по обучению с подкреплением (Reinforcement Learning, RL), где агент учится играть в крестики-нолики (Tic-Tac-Toe) без использования сложных алгоритмов на чистом С.

Основная цель — продемонстрировать, как классические методы RL справляются с простыми играми.

🔥 Чем интересен?
Минимализм и простота
Весь код написан на чистом C (~400 строк).
Нет зависимостей — только стандартная библиотека.
Идеален для изучения основ RL «с нуля».

Классический подход к RL
Используется метод Temporal Difference (TD) Learnin
Агент обучается через игру (self-play) и обновляет стратегию на основе наград.

Образовательная ценность
Понятная визуализация процесса обучения (таблицы Q-значений).
Пример того, как простая задача помогает понять фундамент RL.

Эффективность
После обучения агент играет почти оптимально, избегая поражений.
Код легко модифицировать для экспериментов (например, изменить размер доски).

📊 Как это работает?
Q-таблица хранит «ценность» каждого действия в конкретном состоянии.

Агент выбирает ход на основе текущих Q-значений (с добавлением случайности для исследования).


P.S. Если вы думаете, что RL — это только про AlphaGo и Dota 2, этот проект покажет, что даже в простых задачах есть глубина! 🧠

Github

@ai_machinelearning_big_data


#rl #ml #ai #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6915🔥7🥱4
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ Thera: Aliasing-Free Arbitrary-Scale Super-Resolution with Neural Heat Fields

Новая SOTA для апскейлинга изображений, в которой используются нейронные тепловые поля (Neural Heat Fields) для произвольного масштабирования изображений без наложения спектров.

Основная идея заключается в том, что вместо обычного подхода, где каждый пиксель обрабатывается отдельно, этот метод учитывает влияние соседних пикселей. Это позволяет избежать искажений и сохранить плавность изображения при увеличении.

Предложенный метод достигает нового уровня качества в задаче arbitrary-scale super-resolution, оставаясь при этом существенно более параметрически эффективным по сравнению с предыдущими решениями.

🟢 Универсальность: Возможность масштабирования с практически любым разрешением делает инструмент гибким для различных задач в компьютерном зрении и обработке изображений.
🟢Простота интеграции: Доступны чекпоинты, понятная документация и готовые скрипты для суперразрешения позволяют легко внедрить инструмент в проекты.

🟡Проект: therasr.github.io
🟡Статья: arxiv.org/abs/2311.17643
🟡Github: github.com/prs-eth/thera
🟡Demo: https://huggingface.co/spaces/prs-eth/thera

@ai_machinelearning_big_data


#upscaling #neuralheatfields #opensource #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61🔥155🤨2
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG.

Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения

YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели.

Ключевые отличия от классического YOLO:

- Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат.
- Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы.
- Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности.

▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным

YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами.

🖥Github
🟡Статья
🟡HF
🟡Colab

#yoloe #opensource #ml #ai #yolo #objectdetection
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6120🔥7🥰2🤓2
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 TrajectoryCrafter (Moving-Camera Diffusion) — свежий инструмент от Tencent, который предлагает новый подход к перенаправлению траекторий камеры в монохромных видео.

Как работает модель:
🌟 Инициализация:
начинается с существующей траектории движения камеры или даже с чистого шума. Так задаётся исходное состояние, которое модель будет постепенно улучшать.

Модель использует одновременно два типа входных данных – рендеры точечных облаков (3D-представления сцен) и исходные видео.

🌟 Диффузионный процесс:
Модель обучается шаг за шагом «очищать» случайный шум, превращая его в последовательность траекторий. На каждом шаге происходит итеративное уточнение — модель предсказывает, как должна выглядеть более реалистичная траектория, исходя из заданных условий (например, плавности движения, и согласованности сцены).

Вместо того чтобы использовать только видео снятые с разных ракурсов, авторы создали обучающий набор, комбинируя обширные монокулярные видео (с обычной камерой) с ограниченными, но качественными многоплановыми видео. Такую стратегию достигается с помощью назвали - «двойная репроекция», она помогает модели лучше адаптироваться к различным сценам.

🌟 Генерация итоговой траектории:
После серии итераций, когда шум устранен, генерируется новая траектория камеры, которая соответствует заданным условиям и обладает высоким качеством визуальной динамики.

Установка:
git clone --recursive https://github.com/TrajectoryCrafter/TrajectoryCrafter.git
cd TrajectoryCrafter


🖥 Github
🟡Статья
🟡Проект
🟡Demo
🟡Video

@ai_machinelearning_big_data


#opensource #ml #ai #cameracontrol #tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3818🔥8💯2
🔥 Mistral Small 3.1

Mistral только что выпустили многоязычный, мультимодальный 24B LLM с производительностью SOTA с контекстом 128K и лицензией Apache 2.0

Модель превосходит аналогичные модели, такие как Gemma 3 и GPT-4o Mini, обеспечивая при этом скорость инференса 150 токенов в секунду.

Это новая версия компактной языковой модели от Mistral.ai, разработанная для обеспечения высокой производительности при минимальных вычислительных затратах.

Оптимизированная архитектура: Улучшения в конструкции модели позволяют снизить задержки инференса и повысить точность генерации, что особенно важно для приложений в реальном времени. Mistral Small 3.1 может работать на одном RTX 4090 или Mac с 32 ГБ оперативной памяти.

Эффективное использование ресурсов: Благодаря сниженным вычислительным требованиям, модель идеально подходит для работы на устройствах с ограниченными ресурсами — от мобильных телефонов до облачных серверов.

Широкий спектр применения: Mistral Small 3.1 сохраняет баланс между компактностью и качеством, что делает её универсальным инструментом для задач обработки естественного языка: от чат-ботов и виртуальных помощников до систем анализа текстов.

Стабильность и надёжность: Новая версия демонстрирует улучшенную устойчивость и предсказуемость работы, что помогает разработчикам создавать более качественные и надежные приложения.

🟡HF: https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503
🟡Post: https://mistral.ai/news/mistral-small-3-1/

@ai_machinelearning_big_data


#mistral #llm #mistralsmall
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍67🔥2616🍾6
✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5221🔥13🤷‍♂3
✔️ "EXAONE Deep Released ━ Setting a New Standard for Reasoning AI" от LG AI Research

Мы уже писали про довольно интересное семейство моделей от LG, на этот раз они представили по-настоящему мощные ризонинг модели.

1) EXAONE Deep 2.4B превосходит другие модели сопоставимого размера,
2) EXAONE Deep 7.8B превосходит не только открытые модели сопоставимого размера, но и OpenAI o1-mini,
3) EXAONE Deep 32B демонстрирует конкурентоспособные характеристики по сравнению с ведущими открытым моделями.

Модель 32B, которая по размеру равна примерно 5% от размера DeepSeek r1, превосходит ее почти на всех бенчмарках.

Прорыв в цепочке рассуждений – релиз акцентирует внимание на улучшении "chain-of-thought" механизма, что делает модель способной генерировать обоснованные выводы и поддерживать длинные цепочки логических рассуждений.

🟡Релиз: https://www.lgresearch.ai/blog/view?seq=543
🟡Статья: https://arxiv.org/abs/2503.12524
🟡HF: https://huggingface.co/LGAI-EXAONE/EXAONE-Deep-32B
🟡Github: https://github.com/LG-AI-EXAONE/EXAONE-Deep

@ai_machinelearning_big_data


#AI #ML #LLM #EXAONE #LG #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
37👍26🔥7🤓2
🔥 Stable Virtual Camera – релиз от Stability AI: модель генерации 3D видео из 2D изображений.

Эта разработка, представленная в исследовательском превью, позволяет создавать реалистичные 3D видео без сложной реконструкции сцены или специализированной оптимизации.

С помощью одного или нескольких изображений модель позволяет создать видео с плавной траекторией с любой перспективы, которой вы пожелаете.

🌟 Основные моменты:

▶️ Модель использует мультивью диффузию для преобразования обычных 2D изображений в объемные 3D видео с достоверной глубиной и перспективой.
▶️ Динамическое управление камерой: поддерживаются не только стандартные движения, но и 14 различных траекторий, включая 360°, Лемнискату, Спираль, Dolly Zoom и другие, что позволяет создавать уникальные кинематографические эффекты.
▶️ Гибкость входных данных: возможность генерировать 3D видео, используя как одно изображение, так и до 32 изображений.
▶️ Продвинутая архитектура: применение двухпроходного процедурного сэмплинга обеспечивает плавные переходы даже в видео длиной до 1000 кадров, гарантируя непрерывное и стабильное отображение движения.
▶️ Преимущество перед конкурентами: в тестах на синтез новых точек обзора (NVS) модель показывает хорошие результаты, превосходя такие инструменты, как ViewCrafter и CAT3D, благодаря оптимальному соотношению генеративного потенциала и плавности временных переходов.

Релиз доступен для исследовательского использования под некоммерческой лицензией.

🟡Релиз: https://stability.ai/news/introducing-stable-virtual-camera-multi-view-video-generation-with-3d-camera-control
🟡Статья: https://stability.ai/s/stable-virtual-camera.pdf
Веса: https://huggingface.co/stabilityai/stable-virtual-camera
🖥 Github: https://github.com/Stability-AI/stable-virtual-camera

@ai_machinelearning_big_data


#stability #ai #ml #release
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
42🔥21👍9
⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

▶️ Автор протестировал все доступные модели YOLO и показал как их развертывать.

В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5618🤓5🔥3😁2🗿2👌1