287K subscribers
3.98K photos
691 videos
17 files
4.56K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Llama3-SWE-RL: Методика обучения LLM для задач разработки ПО с использованием RL.

SWE-RL – техника обучения LLM для задач разработки программного обеспечения с применением обучения с подкреплением на данных открытых репозиториев Github.

Llama3-SWE-RL наделяет навыкам ризонинга, улучшая результаты на задачах вне общего домена кодинга: функциональное программирование, использование библиотек, планирование кода, математические операции и NLP. В отличие от SFT, SWE-RL позволяет модели улучшать свои общие способности рассуждения.

Пайплайн методики состоит из последовательности этапов:

🟢Первый этап - сбор, модерация и агрегирование pull requests из публичных репозиториев Github, разметка и преобразование этого массива в датасет (описание проблемы-контекст кода - "oracle patch")

Oracle patch - это эталонный вариант исправления кода, используемый для обучения и оценки языковых моделей в задачах, связанных с автоматическим решением проблем в программном обеспечении


🟢Второй этап: обучение LLM навыкам генерации кода на основе задачи и контекста, расчет поощрения для RL (тут используют similarity score между инференсом модели и "oracle patch" с использованием difflib.SequenceMatcher. Неверные ответы получают отрицательный reward)

🟢Третий этап: корректировка и оптимизация политики обучения с помощью GPRO.

Тестовая модель Llama3-SWE-RL-70B, обученная на основе Llama-3.3-70B-Instruct с использованием SWE-RL, показала 41.0% solve rate на SWE-bench Verified, это лучший показатель среди моделей среднего размера (<100B) и сопоставимо с результатом GPT-4o.

Прикладная реализация SWE-RL доступна в репозитории проекта, где разработчиками представлены шаблоны промптов и реализация функции вознаграждения на основе сходства последовательностей.

▶️ Локальная установка с примером использования в проекте:

# Install SWE-RL
git clone https://github.com/facebookresearch/swe-rl && cd swe-rl
pip install -e ".[dev]"
pytest

# example on how you can use the reward function in your own project:
import swerl

file = """
def sort_list(lst):
return sorted(lst)
""".strip()

oracle_file = """
def sort_list(lst: list[int]) -> list[int]:
return sorted(lst)
""".strip()

context = {"example.py": file}
oracle = {"example.py": oracle_file}

output = """
<think>
...thoughts by LLM
</think>
<solution>
```python
### example.py
<<<<<<< SEARCH
def sort_list(lst):
=======
def sort_list(lst: list[int]) -> list[int]:
>>>>>>> REPLACE
</solution>
""".strip()

reward, metadata = swerl.core.reward.calculate_search_replace_reward(context, oracle, output)
assert reward == 1.0
print(metadata)


📌Лицензирование: CC-NC-4.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #SWERL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍355🔥5
⚡️релиз GPT-4.5

Главное:
- Универсальная модель: подходит как для креативных, так и для повседневных задач.
- Нейронка может грубить: если попросить, chatgp сможет быть очень грубым ( привет Grok)
- Значительное улучшение в общении: Сэм Альтман отметил, что это первая модель, с которой он чувствует себя так, словно общается с очень внимательным человеком.
- Масштабный прогресс: в три раза точнее обрабатывает факты и почти в три раза реже допускает ошибки по сравнению с GPT-4.
- Чувствует контекст — лучше понимает тон, скрытые намёки и эмоции.

1млн
токенов обойдутся в … 150$.

Новинку уже потихонечку раскатывают на пользователей с PRO-подпиской. Тестим тут.

https://cdn.openai.com/gpt-4-5-system-card.pdf
42🔥19👍15😨9😁7🥰5😴2
✔️ 5 день недели опенсорса: и новый релиз от DeepSeek

DeepSeek представили Fife-Flyer File System (3FS) – параллельную файловую систему, способную использовать всю пропускную способность современных SSD и RDMA-сетей.

▶️ Это решение показывает впечатляющие результаты:

• 6.6 TiB/s – суммарная скорость чтения в 180-узловом кластере
• 3.66 TiB/min – пропускная способность на GraySort в 25-узловом кластере
• 40+ GiB/s – пик производительности KVCache lookup на одном клиентском узле

Архитектура 3FS дезагрегирована и обеспечивает строгую согласованность, что делает её незаменимой для задач предварительной обработки данных, загрузки датасетов, сохранения контрольных точек и быстрого поиска эмбеддингов во время инференса (V3/R1).

Показатели 3FS демонстрируют, что будущее обработки данных лежит в использовании распределенных и дезагрегированных архитектур, где каждая компонента системы работает на максимуме своих возможностей.

В дополнение к Fife-Flyer File System, представлен Smallpond – фреймворк для обработки данных на базе этой системы, который помогает ещё больше упростить рабочие процессы с большими объёмами информации.

3FSgithub.com/deepseek-ai/3FS
Smallpondgithub.com/deepseek-ai/smallpond

@ai_machinelearning_big_data


#OpenSourceWee #DeepSeek #Smallpond #3FS #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥238👻2👏1😁1
✔️ Deepseek DualPipe: алгоритм параллелизма для обучения LLM.

Deepseek в рамках марафона "5 дней opensource-проектов" опубликовал проект DualPipe. Это алгоритм двунаправленного конвейерного параллелизма для повышения эффективности обучения больших языковых моделей. DualPipe совмещает вычисления и передачу данных в процессе обучения за счет одновременного выполнения прямого и обратного проходов, тем самым нивелирует периоды простоя или неэффективного использования вычислительных ресурсов.

С помощью этого алгоритма обучались Deepseek V3 и R1 и теперь он в доступен под лицензией MIT. Подробности и примеры использования - в репозитории deepseek-ai/DualPipe на GitHub.
Deepseek в X (Twitter)

✔️ Ideogram 2a: релиз новой text-to-image модели.

Ideogram выпустила новую модель - Ideogram 2a, которая. по заверению создателей, обещает стать самой быстрой и экономичной разработкой компании, позволяя создавать высококачественную графику с текстом и фотореалистичные изображения всего за несколько секунд.

Стоимость Ideogram 2a на 50% ниже, чем у ее предшественника, Ideogram 2.0. Модель доступна как в веб-сервисе Ideogram, так и через API.
Ideogram в X (Twitter)

✔️ Claude получила интеграцию с Github и обновление tool use.

Алекс Альберт, руководитель отдела по связям с клиентами Antropic, в X сообщил, что интеграция GitHub с Claude теперь открыта для всех пользователей.

Помимо этого, новейшая модель 3.7 Sonnet сегодня получила более эффективную реализацию использования инструментов - теперь она использует в среднем на 14% меньше токенов и показывает заметное улучшение производительности. Обновление имеет заголовок token-efficient-tools-2025-02-19.
Alex Albert в X (Twitter)

✔️ Mercury Coder - первая коммерческая диффузионная LLM-модель.

Inception Labs представила Mercury Coder, diffusion large language models (dLLM), которая обещает перевернуть представление о скорости и эффективности. dLLM, по словам разработчиков, до 10 раз быстрее и дешевле существующих LLM.

Утверждается, что Mercury Coder способна обрабатывать более 1000 токенов в секунду на NVIDIA H100s. В отличие от традиционных LLM, dLLM не ограничены последовательным созданием текста, что позволяет им лучше рассуждать и структурировать ответы.

В бенчмарках на Copilot Arena Mercury Coder Mini занял 2 место, превзойдя GPT-4o Mini и Gemini-1.5-Flash. Inception Labs предлагает доступ к инференсу через API и on-premise развертывания, заявлена поддержка файнтюнинга. Попробовать можно бесплатно в плейграунде.
inceptionlabs.ai

✔️ Cloudflare на защите ИИ: релиз Guardrails в AI Gateway.

Cloudflare представила Guardrails в AI Gateway – решение, созданное, чтобы сделать использование ИИ более безопасным и предсказуемым. Инструмент выступает в роли "модератора", контролирующего взаимодействие пользователей с онлайн ИИ моделями OpenAI, Anthropic и DeepSeek.

Guardrails анализирует запросы пользователей и ответы моделей на предмет нежелательного контента, используя Llama Guard. Система может блокировать или помечать опасные запросы и ответы, обеспечивая соответствие нормативным требованиям и защиту от репутационных рисков.
blog.cloudflare.com

✔️ В плагине Material Theme для VS Code обнаружен вредоносный код.

Пользователи сообщества VS Code провели анализ и обнаружили, что Material Theme содержит вредоносный код, это подтвердили и эксперты по безопасности Microsoft, которые определили, что плагин содержит бэкдоры.

В настоящее время VS Code удалил плагин из маркета и попросил всех его пользователей немедленно деинсталлировать Material Theme из соображений безопасности. Разработчик плагина был заблокирован. Сообщений о возможном сборе данных и последствиях злонамеренного вторжения пока не поступало.
news.ycombinator.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍449🥰1
⚡️Agentic Reward Modeling –свежий проект от THU-KEG, цель которого переосмыслить подход к обучению агентных систем.

Этот инструмент направлен на разработку методов вознаграждения, где агент не просто выполняет команды, а учится понимать свои действия в контексте более сложных задач и долгосрочных целей.

Основные особенности:

- Вместо стандартных методов RL, где вознаграждения зачастую зависят от заранее заданных критериев, здесь акцент сделан на выработку более сложных стратегий, адаптирующихся под изменяющуюся среду и цели.
- Инструмент помогает моделировать вознаграждения таким образом, чтобы агент мог самостоятельно корректировать свои действия, учиться на ошибках и, в итоге, демонстрировать более «человеческое» принятие решений.
- Разработчики могут использовать данный подход в многоагентных системах и комплексных задачах, где важна динамическая оценка эффективности действий.

Этот инструмент интересен не только своим теоретическим потенциалом, но и практическими применениями в области создания более автономных и интеллектуальных систем. Agentic Reward Modeling открывает новые возможности для исследования агентов, способных обучаться в реальном времени, что делает его перспективным для дальнейших исследований и интеграций в реальные приложения.

Paper: https://arxiv.org/abs/2502.19328
Code:
https://github.com/THU-KEG/Agentic-Reward-Modeling

@ai_machinelearning_big_data

#ai #ml #opnesource #agents #aiagents
👍3110🔥5
🌟 MatAnyone: модель для выделения по маске людей на видео.

MatAnyOne - memory-based модель для видео-маттинга, разработанная для получения стабильных и точных результатов в сценариях реального постпродакшена. В отличие от методов, требующих дополнительного аннотирования, MatAnyOne использует только кадры видео и маску сегментации целевого объекта, определенную на первом кадре.

MatAnyOne оперирует регионально-адаптивным слиянием памяти, где области с небольшими изменениями сохраняют данные из предыдущего кадра, а области с большими изменениями больше полагаются на информацию из текущего кадра. Такая техника позволяет MatAnyOne эффективно отслеживать целевой объект, даже в сложных и неоднозначных сценах, сохраняя при этом четкие границы и целые части переднего плана.

При создании модели применялась уникальная стратегия обучения, которая опирается на данные сегментации для улучшения стабильности выделения объекта. В отличие от распространенных практик, MatAnyOne использует эти данные непосредственно в той же ветви, что и данные маски. Это достигается путем применения регионально-специфичных потерь: пиксельная потеря для основных областей и улучшенная DDC-потеря для граничных областей.

Для обучения был специально создан кастомный набор данных VM800, который вдвое больше, разнообразнее и качественнее, чем VideoMatte240K, что по итогу значительно улучшило надежность обучения объектному выделению на видео.

В тестах MatAnyOne показал высокие результаты по сравнению с существующими методами как на синтетических, так и на реальных видео:

🟠На VideoMatte и YouTubeMatte, MatAnyOne - лучшие результаты по MAD (средняя абсолютная разница) и dtSSD (расстояние преобразования формы);

🟢В бенчмарке с реальными видео MatAnyOne достиг MAD 0.18, MSE 0.11 и dtSSD 0.95, что значительно лучше, чем у RVM10 (MAD 1.21, MSE 0.77, dtSSD 1.43) и MaGGIe12 (MAD 1.94, MSE 1.53, dtSSD 1.63.


⚠️ Согласно обсуждению в issues репозитория, MatAnyOne способен работать локально от 4 GB VRAM и выше с видео небольшой длительности. Реальных технических критериев разработчик не опубликовал.

▶️Локальная установка и запуск web-demo на Gradio:

# Clone Repo
git clone https://github.com/pq-yang/MatAnyone
cd MatAnyone

# Create Conda env and install dependencies
conda create -n matanyone python=3.8 -y
conda activate matanyone

pip install -e .

# Install python dependencies for gradio
pip3 install -r hugging_face/requirements.txt

# Launch the demo
python app.py


📌Лицензирование: S-Lab License 1.0.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VideoMatte #MatAnyone
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥31👍206🥰3🤔1
✔️ Microsoft выпустила приложение Copilot для Mac.

Microsoft представила нативное приложение Copilot для macOS, функционально схожее с версией для Windows. Приложение дает доступ к веб-интерфейсу Microsoft AI Assistant, позволяя загружать изображения и генерировать текст.

Copilot для macOS получил темную тему оформления и сочетание клавиш (Command + Space) для оперативной активации AI-ассистента, аналогично комбинации Alt + Space в Windows. На данный момент Copilot доступен для пользователей в США, Великобритании и Канаде. Обновление также затронет версию для iPad, в которой появилась функция разделения экрана.

Пользователи iPhone и iPad теперь могут входить в Copilot с Apple ID и загружать текст или PDF для получения ответов на вопросы по документу или суммаризации. Функция автоматического обобщения документов в скором времени станет доступна и в версии для macOS.
theverge.com

✔️ AMD представила видеокарты серии Radeon RX 9070.

AMD официально выпустила видеокарты Radeon RX 9070 и 9070 XT со стартовой ценой 549 долларов США. Они должны поступить в продажу 6 марта и будут напрямую конкурировать с серией RTX 50 от Nvidia.

RX 9070 использует архитектуру RDNA 4 и поддерживает технологию сверхвысокого разрешения FSR 4 нового поколения. Обе модели имеют 16 ГБ видеопамяти, интерфейс PCIe 5.0, обновленный медиа-движок и технологию генерации кадров AFMF 2.1, которая уменьшает артефакты изображения. На презентации также анонсировали RX 9060 начального уровня во втором квартале 2025 года.
amd.com

✔️ Apple разрабатывает технологию для определения возраста пользователей соцсетей.

Apple планирует внедрить новую технологию, которая позволит соцсетям определять, пытаются ли несовершеннолетние пользователи младше 16 лет получить доступ к их приложениям на устройствах iPhone и iPad.

Новая функция для определения возрастного диапазона будет доступна разработчикам приложений. С согласия родителей она сможет знать, относится ли пользователь к категории младше 18, 16 или 13 лет. На основе этой информации приложения смогут ограничивать доступ к определенному контенту или полностью блокировать использование приложений.
theguardian.com

✔️ OpenAI открыла доступ к Sora в Европе и Великобритании.

С 28 февраля пользователи в Великобритании и Европе могут воспользоваться Sora, системой генерации видео от OpenAI, которая ранее была доступна только в США и других странах. Sora включена без дополнительной платы для подписчиков ChatGPT Pro и Plus, но с некоторыми ограничениями на использование.

Для пользователей ChatGPT Plus доступно до 50 видео в месяц с разрешением 720p и длиной до 5 секунд. Подписчики Pro получают неограниченную медленную генерацию, 500 быстрых генераций и возможность создавать видео 1080p длиной до 20 секунд.

В рамках запуска Sora для ЕС OpenAI планирует запустить каналы Sora в Discord для обсуждений и проводить еженедельные "Sora Office Hours".
OpenAI в X (Twitter)

✔️ Google выпустила сверхсложный бенчмарк BIG-Bench Extra Hard.

BIG-Bench Extra Hard (BBEH), продукт Google DeepMind, предназначенный для оценки высокоуровневых способностей LLM к рассуждениям. BBEH значительно повышает сложность за счет замены задач в BIG-Bench Hard.

Результаты тестов на этом бенчмарке показывают, что производительность топовых моделей далека от идеала: средняя точность общих моделей составляет всего 9,8 %, и даже специализированная ризонинг- модель o3-mini (high) достигает только 44,8 %. Исследования показали, что модели рассуждений приносят значительную пользу при решении формальных задач, но имеют ограниченные преимущества при работе со сложными сценариями реального мира, включающими здравый смысл, юмор и т. д.
arxiv.org

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4117🥰3
🌟 MASt3R-SLAM: детализированный SLAM с априорными данными 3D-реконструкции в реальном времени.

MASi3R-SLAM - проект, который умеет строить детальные 3D-карты окружающей среды и отслеживать движение камеры в реальном времени без предварительной калибровки. Система работает даже с изменяющимися во аремени параметрами, например, при зумировании или оптических искажениях.

Основа MASi3R-SLAM - алгоритм, использующий модели DUSi3R и MASi3R для восстановления геометрии сцены по 2 изображениям. DUSi3R анализирует пары изображений, предсказывая детальные карты 3D-точек в общей системе координат, а MASi3R дополнительно генерирует дескрипторы для каждого пикселя, повышая точность сопоставления даже при большом смещении кадров.

Полученные данные от моделей обрабатывает уникальный алгоритм, который анализирует «карты точек», прогнозируемые нейросетью, и находит соответствия между кадрами за 2 миллисекунды, что в 40 раз быстрее аналогов.

В тестировании на наборах TUM RGB-D и EuRoC, показали: MASi3R-SLAM превосходит DROID-SLAM и другие системы по точности траектории (средняя ошибка — 3 см) и детальности 3D-моделей.

На сегодняшний день основное ограничение MASi3R-SLAM — скорость декодера из-за его вычислительной нагрузки: полный цикл обработки одного ключевого кадра занимает в среднем 26–27 миллисекунд, что примерно 64% общего времени работы паплайна.

Например, при разрешении 512 пикселей по длинной стороне декодер MASi3R тратит до 2 секунд на глобальный поиск соответствий, тогда как алгоритм сопоставления сокращает это время до 2 мс. На выходе создается «бутылочное горлышко», которое ограничивает частоту кадров до 15 FPS.

⚠️ Перед установкой необходимо загрузить модели и установить версию Pytorch, соответствующую установленной версии CUDA.


▶️Локальная установка и примеры запуска для live-режима и видео:

# Create Conda env 
conda create -n mast3r-slam python=3.11
conda activate mast3r-slam

# Clone Repo
git clone https://github.com/rmurai0610/MASt3R-SLAM.git --recursive
cd MASt3R-SLAM/

# Install dependencies
pip install -e thirdparty/mast3r
pip install -e thirdparty/in3d
pip install --no-build-isolation -e .

# Launch Live demo with camera
python main.py --dataset realsense --config config/base.yaml

# Or running on a MP4 video
python main.py --dataset <path/to/video>.mp4 --config config/base.yaml
python main.py --dataset <path/to/folder> --config config/base.yaml


📌Лицензирование: CC-BY-NC-SA-4.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #CV #3D #SLAM #Robotics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍40🔥1811😁1
🚀 6 День недели опенсорса: DeepSeek-V3/R1 Inference System!

DeepSeek выкатил подробный обзор своего инференса для моделей DeepSeek-V3/R1 – с акцентом на архитектурные инновации и невероятную экономическую эффективность.

DeepSeq R1 ежедневно приносит более $560 000, причем затраты на GPU составляют всего $87 000. Что озночает рентабельность в 545 %.

При таких расчетах теоретическая годовая выручка могла бы превысить $200 млн.

Компания также отметила, что затраты на обучение моделей составили менее $6 млн. Для сравнения, американские конкуренты, такие как OpenAI, инвестируют миллиарды долларов в обучение ИИ с использованием чипов NVIDIA H100. DeepSeek использует менее мощные NVIDIA H800, но это не мешает её моделям успешно конкурировать на глобальном рынке.

Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с

Разительный контраст с американскими конкурентами, работающими в убыток.

Такой уровень доходности достигается за счёт оптимизированного распределения вычислений и гибкой архитектуры.

🌟 В DeepSeek-V3/R1 используется Cross-node Expert Parallelism (EP) — метод, при котором модель делится между GPU-узлами, а каждая видеокарта обрабатывает лишь небольшую часть модели. Эксперты распределяются между узлами кластера, что снижает нагрузку на память GPU, увеличивает размер батча и позволяет равномерно загружать видеокарты, избегая простоев. Это ускоряет вычисления и минимизирует задержки.

🌟 Для обработки данных DeepSeek-V3/R1 использует двухфазную стратегию инференса.

1) Prefilling фаза — здесь bспользуется EP32, где каждый GPU получает 9 направляемых экспертов и 1 общего эксперта, что позволяет минимизировать расходы на обработку данных.

2) Для Decoding используется EP144, перераспределяющий нагрузку так, что каждый GPU управляет 2 направляемыми экспертами и 1 общим экспертом. Такая стратегия помогает достичь высокой производительности без потери качества ответа.

– ~73.7k токенов/с для prefilling
– ~14.8k токенов/с для декодинга на одном узле H800

Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с


🔗 Подробнее: *клик*

@ai_machinelearning_big_data


#AI #DeepLearning #DeepSeek #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
32👍22🔥10👏1