287K subscribers
3.98K photos
688 videos
17 files
4.56K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✔️ Microsoft Ignite 2024: анонс новых возможностей ИИ.

На конференции Microsoft Ignite 2024 компания представила новые функции и обновления, связанные с Microsoft Copilot и Azure AI.

Среди основных анонсов - специализированные агенты в Microsoft 365 Copilot, которые будут выполнять задачи от имени пользователя, например, отвечать на вопросы о политике компании или создавать планы проектов.

Copilot Studio получит автономные возможности агентов и библиотеку агентов для создания рабочих сценариев. Разработчики смогут создавать собственных агентов с помощью Microsoft Agent SDK.

Azure AI Foundry поможет организациям проектировать, настраивать и управлять приложениями ИИ и будет интегрирован с Copilot Studio.

В Copilot Studio появятся возможности загрузки изображений, создания голосовых агентов и расширенной настройки знаний.
news.microsoft.com

✔️ Стартап d-Matrix начал поставки ИИ-чипов собственного производства.

Стартап, привлекший более 160 млн. долларов финансирования, сообщил, что первые клиенты уже тестируют образцы чипов, а полномасштабные поставки ожидаются в следующем году. Чип разработан для обработки большого количества запросов от пользователей в задачах текстовой генерации и генерации видео.

d-Matrix не назвала конкретных клиентов, но отметила, что SuperMicro будет продавать серверы, совместимые с чипами d-Matrix.
reuters.com

✔️ Институт Arc представил Evo – первую базовую биологическую модель, обученную на ДНК.

Evo – первая биологическая фундаментальная модель, обученная на ДНК, которая способна прогнозировать и создавать генетические последовательности длиной более миллиона оснований.

В отличие от других моделей, обучающихся на тексте, Evo извлекает информацию непосредственно из ДНК. Evo была представлена в препринте в этом году, но теперь она опубликован в журнале Science, где исследователи демонстрируют, как она может помочь в более глубоком понимании биологических последовательностей.

Первые эксперименты с Evo позволили спрогнозировать, как изменения в ДНК могу влиять на бактерии.
readwrite.com

✔️ Adobe разработала технологию предотвращения галлюцинаций в моделях ИИ.

Adobe подала заявку на патент, описывающий систему "предотвращения галлюцинаций для анализа естественного языка", которая предназначена для контроля и корректировки выходных данных генеративных моделей ИИ.

Система использует "модуль контроля галлюцинаций", который проверяет выходные данные модели на соответствие фактам, извлеченным из "хранимых данных ". Если обнаруживается несоответствие, система запрашивает повторную генерацию выходных данных.

Технология ориентирована на корпоративное использование, где точность и надежность ИИ-систем критически важны.
thedailyupside.com

✔️ Cerebras Systems обновила свой сервис инференса, достигнув рекордной производительности для самой большой Llama.

Компания объявила о значительном обновлении облачного сервиса инференса для LLM, который теперь способен обрабатывать Llama 3.1 405B со скоростью почти 1000 токенов в секунду. Это достижение ставит производительность сверхгигантской модели наравне с ультра-маленькими моделями.

Высокая скорость обработки стала возможной благодаря специализированной архитектуре, разработанной компанией для своих мощных ИИ-чипов и программного стека для высокопроизводительных вычислений.

Cerebras утверждает, что ее сервис превосходит по скорости GPT-4o от OpenAI и Claude 3.5 Sonnet от Anthropic более чем в 10 раз. В реальных приложениях, таких как голосовой поиск, время отклика Cerebras составляет менее 10 миллисекунд. Компания планирует предоставить доступ к сервису в первом квартале 2025 года.
siliconangle.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23👏86🔥4
🌟 Генеративные агенты: моделирование поведения 1000 человек.

Stanford University, Northwestern University и University of Washington, совместно с Google Deepmind, при участии социологов, разработали архитектуру, которая позволяет симулировать поведение более 1000 реальных людей с помощью LLM, обученных на транскрипции двухчасовых интервью с добровольцами-участниками.

Архитектура использует метод "экспертных размышлений", где LLM генерирует выводы о каждом участнике, принимая на себя роли различных специалистов социальных наук (психолога, экономиста, политолога, демографа).

Процесс создания агентов начинался со стратифицированного отбора 1052 участников, репрезентирующих население США по возрасту, полу, расе, региону, образованию и политическим взглядам. Масштабирование сбора данных проводилось агентом-интервьюером на основе GPT-4o, который динамически генерировал уточняющие вопросы, адаптируясь к ответам участников.

Оценка точности агентов проводилась с помощью сравнения их ответов с ответами реальных участников на вопросы из Общего социального опроса (GSS), опросника "Большая пятерка" (BFI-44), 5 экономических игр и 5 социальных экспериментов. Для учета непостоянства человеческого поведения точность агентов нормализовали с помощью сравнения с тем, насколько последовательно сами участники воспроизводили свои ответы через две недели.

Результаты оценки показали высокую точность прогнозирования агентов, обученных на интервью. Они смогли предсказать ответы на вопросы GSS с нормализованной точностью 0.85, а черты личности по BFI-44 - с нормализованной корреляцией 0.80. Использование интервью значительно повысило точность по сравнению с агентами, использующими только демографические данные или краткие описания личности.

В экспериментах агенты успешно воспроизвели 4 из 5 личностных особенностей, наблюдавшихся у реальных участников, а оценки размеров этих особенностей показали высокую корреляцию (r = 0.98).

Доступ к банку агентов двухуровневый:

🟢открытый доступ к агрегированным ответам на фиксированные задачи и репозиторий с кодом для воспроизведения

🟠ограниченный доступ к индивидуальным ответам на открытые задачи по запросу.


📌 Лицензирование: MIT License.


🟡Arxiv
🟡Dataset
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Social
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2513🔥10
✔️ AlphaQubit от Google: новый уровень точности в квантовых вычислениях.

Google DeepMind и Google Quantum AI разработали AlphaQubit, декодер, который устанавливает новый стандарт точности в коррекции ошибок квантовых вычислений. AlphaQubit, нейронная сеть, обученная на синтетических и реальных данных с процессора Sycamore, использует архитектуру Transformers для анализа информации об ошибках.

Тестирование показало, что AlphaQubit снижает количество ошибок на 6% по сравнению с тензорными сетями и на 30% по сравнению с корреляционным сопоставлением. Несмотря на то, что AlphaQubit демонстрирует высокую точность, остаются проблемы, связанные с достижением скорости работы в реальном времени и масштабируемости.
blog.google

✔️ NVIDIA предложила оптимизацию семейства Llama 3.2 на GPU.

NVIDIA оптимизировала модели Llama 3.2 (11 млрд и 90 млрд параметров) и SLM (1 млрд и 3 млрд параметров) за счет использования библиотеки TensorRT и TensorRT-LLM. Оптимизация с помощью TensorRT обеспечивает более высокую пропускную способность и меньшую задержку инференса. NVIDIA также разработала собственную схему квантования FP8 для повышения производительности, доступную через TensorRT Model Optimizer. SLM оптимизированы для Windows с помощью ONNX Runtime Generative API и DirectML.
Оптимизированный инференс Nvidia TensorRT Llama 3.2 доступен в сервисе NVIDIA NIM.
developer.nvidia.com

✔️ Gemini теперь запоминает предпочтения пользователей.

Google представила новую функцию "памяти" для Gemini, позволяющую ему учитывать предпочтения пользователя в будущих взаимодействиях. Эта функция, доступная подписчикам Google One AI Premium ($20 в месяц), позволяет пользователям сохранять информацию о своих предпочтениях, например, о нелюбимых ингредиентах в рецептах.

Gemini будет использовать эти данные для персонализации ответов и повышения эффективности помощи пользователю. Функция памяти доступна только через веб-браузер. Пользователи могут удалять сохраненные предпочтения или отключать функцию, если предпочитают, чтобы Gemini не учитывал предыдущие взаимодействия.
makeuseof.com

✔️ DeepSeek представила модель, превосходящую OpenAI-o1.

Компания DeepSeek выпустила R1-Lite-Preview — новую большую языковую модель, ориентированную на рассуждения. Модель, доступная только через веб-чат DeepSeek Chat и демонстрирует производительность, близкую, а в некоторых случаях и превосходящую, модель OpenAI o1-preview по результатам тестов AIME (American Invitational Mathematics Examination) и MATH.

R1-Lite-Preview использует метод «цепочки рассуждений», показывая пользователю этапы своего "мыслительного" процесса. Компания планирует в будущем выпустить R1 с открытым исходным кодом.
venturebeat.com

✔️ Suno представляет новую модель V4.

Suno, популярная платформа генеративной музыки, выпустила новую модель V4, которая создает более реалистичную музыку по сравнению с предыдущими версиями. Модель V4 доступна платным подписчикам и в будущем будет доступна всем пользователям. V4 демонстрирует более четкое звучание, реалистичный вокал и инструменты, более широкую стереопанораму. Модель также улучшила свои композиторские навыки, создавая более интересные и неожиданные музыкальные решения.
geeky-gadgets.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
17👍16🔥71
🌟 TinyTroupe: мультиагентное моделирование личностей.

TinyTroupe - экспериментальная библиотека Python от Microsoft, которая симулирует поведение людей с определенными личностями, интересами и целями. Эти агенты, TinyPerson, могут слушать нас и друг друга, отвечать и жить своей жизнью в симулированных средах TinyWorld.

Симуляция реалистичного имитационного поведения достигается за счет использования возможностей LLM (GPT-4) . С помощью TinyTroupe можно создать свои собственные сценарии и изучать, как личности с разными характерами будут взаимодействовать и реагировать в разных ситуациях.

Библиотека TinyTroupe помогает понять поведенческие факторы персоналий, но не пытается напрямую им помочь (в отличие от виртуальных помощников). Вместо этого она создает специальные инструменты, которые работают только в смоделированных условиях. TinyTroupe отличается от других ролевых инструментов тем, что она направлена на решение реальных бизнес-задач и повышение эффективности проектов, а не просто на игру.

Как и любая мультиагентная система, TinyTroupe предоставляет 2 ключевые абстракции:

🟢TinyPerson - агенты (смоделированные личности) с определенными чертами характера, интересами и целями.

🟢TinyWorld - среда, в которой агенты существуют и взаимодействуют.

Обе сущности настраиваются через различные параметры в config.ini, там же - тип API (Azure OpenAI Service или OpenAI API), параметры модели и уровень логирования.

TinyTroupe предлагает ряд утилит, которые облегчают создание симуляций и извлечение ценной информации из них:

🟠TinyPersonFactory для генерации новых TinyPerson с использованием LLM;

🟠TinyTool - симулированные инструменты, которые могут использоваться TinyPerson;

🟠TinyStory для создания и управления историей, рассказываемой через симуляции;

🟠TinyPersonValidator для проверки поведения TinyPerson;

🟠ResultsExtractor и ResultsReducer для извлечения и сокращения результатов взаимодействия между агентами.

Чтобы получить представление о том, на что способен TinyTroupe, в репозитории опубликовано несколько примеров его использования. Эти примеры находятся в папке examples/, и, на выбор, можно просмотреть предварительно скомпилированные Jupyter-блокноты, либо запустить их самостоятельно локально.

⚠️ TinyTroupe находится на ранней стадии разработки и API библиотеки может меняться.

⚠️ Для использования TinyTroupe нужен OpenAI API Key или Azure OpenAI Service API KEY.


▶️Установка:

# Create & activate conda env
conda create -n tinytroupe python=3.10
conda activate tinytroupe

# Clone the repository
git clone https://github.com/microsoft/tinytroupe
cd tinytroupe

# Create and run TinyPerson
from tinytroupe.examples import create_lisa_the_data_scientist

lisa = create_lisa_the_data_scientist() # instantiate a Lisa from the example builder
lisa.listen_and_act("Tell me about your life.")


📌 Лицензирование: MIT License.


🖥Github


@ai_machinelearning_big_data

#AI #ML #Microsoft #TinyTroupe #Рersonalities
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥147❤‍🔥2🤔2
⚡️ SANA: Генерация изображений изображений высокого разрешения от Nvidia Labs.

Sana - семейство моделей для генерации изображений с разрешением до 4096x4096 пикселей. Главное преимущество Sana - высокая скорость инференса и низкие требования к ресурсам, модели можно запустить даже на ноутбуке.

Секрет эффективности Sana в ее архитектуре, которая состоит из нескольких инновационных компонентов:

🟢Deep Compression Autoencoder (DC-AE)
Сжимает изображение в 32 раза, в результате чего значительно сокращается число латентных токенов, что, в свою очередь, повышает эффективность обучения и позволяет генерировать изображения с разрешением 4K.

🟢Linear Diffusion Transformer (Linear DiT)
Использует линейное внимание вместо традиционного, ускоряя генерацию с разрешением 4K в 1.7 раза.

В Linear DiT вместо модуля MLP-FFN используется Mix-FFN, который объединяет в себе свертку 3x3 и Gated Linear Unit (GLU). Mix-FFN позволяет отказаться от позиционного кодирования без потери качества.

🟢Decoder-only Small LLM as Text Encoder
Энкодер, основанный на LLM Gemma, который лучше понимает текстовые запросы пользователя и точнее передает их смысл на генерации.

Для точного соответствия "текст - изображение" при обучении энкодера применялись "сложные человеческие инструкции" (CHI), которые научили Gemma учитывать контекст запроса.

Sana создавалась с помощью уникальной стратегии обучения и выборки. В процессе обучения используются несколько VLM (VILA, InternVL2) для создания различных аннотаций к каждому изображению. Затем, на основе CLIP-оценки, были отобраны наиболее подходящие пары "текст-изображение".

Обучение происходило постепенно, начиная с разрешения 512x512 и заканчивая 4096x4096, а алгоритм Flow-DPM-Solver ускорил процесс выборки, сократив количество шагов по сравнению с Flow-Euler-Solver.

Результаты тестирования Sana впечатляют:

🟠Sana-0.6B, работающая с изображениями 512x512, в 5 раз быстрее, чем PixArt-Σ, при этом показывает лучшие результаты по метрикам FID, Clip Score, GenEval и DPG-Bench.

🟠При разрешении 1024x1024 Sana-0.6B в 40 раз быстрее PixArt-Σ.

🟠Sana-0.6B превосходит по скорости Flux-12B в 39 раз при разрешении 1024x1024) и может быть запущена на ноутбуке с 16 GB VRAM, генерируя изображения 1024x1024 менее чем за секунду.


⚠️ Для локального инференса модели 0.6B требуется 9GB VRAM, а для модели 1.6B - 12GB VRAM.


▶️ Установка и инференс c GradioUI:

# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth





🟡Страница проекта
🟡Коллекция моделей на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #SANA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥165
✔️ Deus in machina: Швейцарская церковь установила Jesus-AI.

В старейшей церкви швейцарского города Люцерн, часовне Святого Петра, появился AI Jesus, способный общаться на 100 языках. Проект под названием Deus in Machina, был запущен в августе 2024 года в рамках многолетнего сотрудничества с местной университетской исследовательской лабораторией по виртуальной реальности.

AI Jesus был установлен в исповедальне, где посетители могли задавать ему вопросы через решетчатый экран, получая ответы в режиме реального времени. Программа ИИ была обучена на богословских текстах. За двухмесячный период эксперимента более 1000 человек пообщались с аватаром. Две трети пользователей оценили этот опыт как "духовный". Однако, некоторые люди критиковали эксперимент, находя невозможным разговор с машиной, а ответы ИИ - банальными и поверхностными.
theguardian.com

✔️ Samsung Electronics и LG Uplus совместно разрабатывают смартфон ixi-O AI.

Samsung Electronics и мобильный оператор LG Uplus объединили усилия для создания смартфона с искусственным интеллектом, оснащенного цифровым помощником. Компании планируют выпустить "настоящий AI-телефон", который выйдет за рамки простой интеграции сервисов AI-помощника в смартфон.

В рамках этого партнерства Samsung и LG Uplus будут совместно разрабатывать смартфоны Galaxy, интегрируя возможности AI от LG уже на этапе разработки. Основное внимание будет уделено объединению AI-помощника LG Uplus ixi-O с сервисом Samsung Galaxy AI.

Новый AI-смартфон, предварительно названный Galaxy ixi-O, будет ориентирован в первую очередь на пользователей LG Uplus. Ожидается, что смартфон появится в следующем году.
kedglobal.com

✔️ OpenAI запускает бесплатный учебный курс по искусственному интеллекту для учителей.

OpenAI совместно с некоммерческой организацией Common Sense Media запустила бесплатный обучающий курс для учителей, посвященный ИИ и промпт-инжинирингу. Курс должен помочь учителям разобраться в возможностях чат-бота ChatGPT.

Обучение демонстрирует, как использовать ChatGPT для создания учебных материалов и оптимизации рабочих процессов. Курс доступен на сайте Common Sense Media. OpenAI создала специальную команду под руководством бывшего руководителя Coursera Лии Белски, чтобы поддержать ответственное использование ИИ в образовании.

Белски отметила высокий уровень использования ChatGPT среди учеников и поддержку со стороны родителей, которые считают навыки работы с ИИ необходимыми для будущей карьеры.
reuters.com

✔️ Nvidia представляет новый гибрид на базе CPU и GPU - GB200 Grace Blackwell NVL4 Superchip.

Nvidia анонсировала GB200 NVL4, модуль с 4 графическими процессорами B200 и 2 процессорами Grace на одной материнской плате. Решение предназначено для высокопроизводительных вычислений и гибридных рабочих нагрузок ИИ, предлагая 1,3 ТБ когерентной памяти.

По заявлению Nvidia, GB200 NVL4 эффективней в 2,2 раза в задачах моделирования, в 1,8 раза - в обучении ИИ и в 1,8 раза в инференсе по сравнению с Nvidia GH200 NVL4 Grace Hopper Superchip.

GB200 NVL4 будет доступен до конца 2024 года от различных производителей: MSI, Asus, Gigabyte, Wistron, Pegatron, ASRock Rack, Lenovo, HP Enterprise и другие.
tomshardware.com

✔️ Немецкий стартап Gemesys привлек 8,6 млн евро на разработку ИИ-чипов, имитирующих работу человеческого мозга.

Gemesys разрабатывает ИИ-чипы нового поколения с использованием мемристоров — электронных компонентов, которые взаимодействуют с нейронными сетями в автономном режиме и с минимальным использованием пропускной способности. Компания Gemesys была основана в 2021 году как спин-офф Рурского университета в Бохуме, Германия.

Финансирование Gemesys возглавил фонд Amadeus APEX Technology Fund совместно с Atlantic Labs при участии NRW.BANK, Sony Innovation Fund и калифорнийского Plug and Play Tech Center.
techfundingnews.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍268🔥5😁3🥰1🤔1
🌟 LAION-DISCO-12M: большой датасет музыки с Youtube.

Набор данных LAION-DISCO-12M состоит из 12 млн ссылок на общедоступные треки YouTube с метаданными. Он собран для поддержки фундаментальных исследований в области машинного обучения, созданию базовых моделей обработки звука, извлечения музыкальной информации, анализа наборов данных аудио и обучение рекомендательных систем и приложений.

Метод создания LAION-DISCO-12M основан на рекурсивном поиске исполнителей на платформе YouTube Music. Начиная с начального списка исполнителей топ-чартов разных стран, новые артисты обнаруживались путем анализа раздела "Похожие исполнители".

Для каждого исполнителя извлекались метаданные: имя, количество подписчиков и список всех песен и музыкальных клипов. Каждая песня или музыкальный клип были связаны с URL-адресом YouTube.

Размер датасета составляет 250 516 исполнителей и 12 648 485 треков.

Поля метаданных:

🟢song_id - идентификатор трека;
🟢title - название;
🟢artist_names - имя исполнителя;
🟢artist_ids - идентификатор исполнителя;
🟢album_name - название альбома;
🟢album_id - идентификатор альбома;
🟢isExplicit - признак наличия ненормативной лексики;
🟢views - количество просмотров;
🟢duration - продолжительность трека.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LAION #Audio #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
👍288🔥8
🌟 Marco-o1: модель рассуждений от Alibaba.

Marco-o1 – LLM, файнтюн-версия Qwen2-7B-Instruct для решения сложных задач, требующих рассуждений. В создании модели использовались методики Chain-of-Thought (CoT), поиска по дереву Монте-Карло (MCTS) и уникальные стратегии регулирования действий при рассуждении.

Marco-o1 обучалась на 3 датасетах: отфильтрованный набор данных Open-O1 CoT, синтетический набор Marco-o1 CoT и собственный набор инструкций Marco.

В модели реализованы 2 стратегии действий: "шаг как действие" и "мини-шаг как действие" (32 или 64 токена соответственно). Мини-шаг как действие обеспечивает более детальное исследование пространства решений.

В Marco-o1 был внедрен механизм рефлексии, который побуждает модель переосмысливать свои рассуждения, что улучшает результаты инференса, особенно в сложных составных задачах.

Модель оценивалась на наборах данных MGSM (английский и китайский). Результаты показали, что Marco-o1 превосходит Qwen2-7B-Instruct и демонстрирует улучшение точности на 6,17% для английского набора данных и 5,60% для китайского. Модель превзошла Google Translate в задачах языкового перевода, особенно при переводе разговорных выражений.

В ближайших планах:

🟠Обучаются версии модели вознаграждения за результат (ORM) и вознаграждения за процесс (PRM).
🟠Reinforcement Learning: обучение с подкреплением для совершенствования рассуждений.

▶️Установка и локальный инференс:

# Clone the repository
git clone https://github.com/AIDC-AI/Marco-o1

# Change to the Macaw-LLM directory
cd Marco-o1

# Install required packages
pip install -r requirements.txt

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("AIDC-AI/Marco-o1")
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Marco-o1")

# Run Inference
./src/talk_with_model.py


📌Лицензирование: Apache 2.0 License.


🟡Модель
🟡Версии GGUF
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #CoT #Alibaba #MarcoO1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍36🔥115🤬2🤣2
✔️ Apple готовит масштабное обновление Siri на основе ИИ.

Компания работает над созданием новой версии голосового помощника Siri, которая будет основана на топовых LLM, чтобы сделать взаимодействие с Siri более естественным и интуитивно понятным.
Внутреннее название проекта - "Siri LLM". Цель обновления - научить Siri быстрее обрабатывать сложные запросы. Новая версия Siri будет интегрирована с функциями Apple Intelligence: создание и обобщение текста. Предварительная презентация планируется в следующем году в рамках iOS 19 и MacOS 16, но полноценный запуск может состояться только через год.
bloomberg.com

✔️ В MIT разработали эффективный способ обучения надежных агентов ИИ.

Ресерчеры из MIT представили новый алгоритм для повышения надежности моделей обучения с подкреплением, которые лежат в основе систем принятия решений искусственного интеллекта.

Алгоритм, получивший название Model-Based Transfer Learning (MBTL), стратегически выбирает задачи для обучения агента ИИ, чтобы он мог эффективно выполнять все задачи в наборе связанных задач. MBTL моделирует, насколько хорошо каждый алгоритм будет работать, если его обучать независимо для одной задачи, а также оценивает, насколько снизится производительность каждого алгоритма, если его перенести на другую задачу.

В результате новый метод позволяет максимизировать производительность при низких затратах на обучение. Тесты показали, что MBTL в 5–50 раз эффективнее стандартных подходов.
news.mit.edu

✔️ Samsung представила модель Gauss2 с возможностью работы на устройствах.

Samsung представила Gauss2, усовершенствованную версию своей модели генеративного искусственного интеллекта. Gauss2 включает три модели: Compact, Balanced и Supreme. Compact оптимизирована для работы на устройстве, Balanced обеспечивает баланс между производительностью, скоростью генерации и эффективностью, а Supreme использует MoE с несколькими моделями, каждая из которых ориентирована на разные типы задач. Модели Gauss2 поддерживают от 9 до 14 языков и несколько языков программирования. Balanced и Supreme соответствуют или превосходят другие модели ИИ в задачах на английском и корейском языках, а их скорость обработки в 1,5–3 раза выше.
gsmarena.com

✔️ США лидирует в ИИ согласно новому инструменту оценки от Стэнфордского университета.

Новый инструмент оценки Global Vibrancy Tool 2024 проанализировал данные из 36 стран и показал, что США является мировым лидером в области ИИ, за ними следуют Китай и Великобритания. Инструмент объединяет 42 специфических для ИИ показателя, чтобы предоставить комплексное количественное представление о том, какие страны лидируют в области ИИ

Инструмент измеряет экосистему ИИ страны по ключевым показателям: исследовательские работы, частные инвестиции, патенты и др. США лидируют в нескольких основных областях, включая выпуск большего числа публично известных моделей машинного обучения, инвестирование большего объема частного капитала в ИИ и публикацию большего числа исследований в области ответственного ИИ, чем любая другая страна.
hai.stanford.edu

✔️ OpenScholar: система ИИ с открытым исходным кодом превосходит GPT-4o в научных исследованиях.

OpenScholar, разработанная Институтом искусственного интеллекта Аллена (Ai2) и Вашингтонским университетом использует языковую модель, дополненную поисковой системой, которая работает с базой данных из более чем 45 миллионов научных работ с открытым доступом.

В отличие от GPT-4o, который генерирует ответы на основе предварительно обученных знаний, OpenScholar извлекает соответствующие документы, синтезирует их результаты и генерирует ответ, основанный на этих источниках. В тестах, использующих ScholarQABench, OpenScholar продемонстрировал превосходную производительность с точки зрения фактической точности и точности цитирования, превзойдя GPT-4o.
venturebeat.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍266🔥2😁1
🌟 Boltz-1: открытая модель для предсказания структуры биомолекулярных комплексов.

Boltz-1 - первая доступная модель с открытым исходным кодом, которая достигает точности AlphaFold3 в прогнозировании 3D-структур белков, РНК, ДНК и небольших молекул. Boltz-1 основана на архитектуре AlphaFold3, но включает ряд модификаций, повышающих точность и общую эффективность модели.

Архитектура состоит из модуля множественного выравнивания последовательностей (MSA), модуля PairFormer и диффузионной модели, работающую на двух уровнях разрешения: тяжелые атомы и токены. Токены представляют собой аминокислоты для белков, основания для РНК и ДНК, а также отдельные тяжелые атомы для других молекул.

Boltz-1 использует диффузионную модель, аналогичную AlphaFold3, но Boltz-1 использует жесткое выравнивание с помощью алгоритма Кабша после каждого шага процедуры вывода, чтобы гарантировать, что интерполированная структура более похожа на очищенную от шума выборку. Это уменьшает дисперсию потерь денойзинга и предотвращает переобучение модели.

Обучение модели проводилось на структурных данных из PDB, выпущенных до 30 сентября 2021 года, с разрешением не менее 9Å. Чтобы ускорить обучение, разработчики Boltz-1 применили алгоритм сопряжения MSA с использованием таксономической информации, унифицированный алгоритм кадрирования и алгоритм определения кармана связывания. Обучение модели заняло 68 тысяч шагов с размером пакета 128, что меньше, чем у AlphaFold3.

Оценка Boltz-1 была выполнена на датасете CASP15 и на наборе PDB, специально созданном разработчиками для тестирования.

Результаты показали, что Boltz-1 сопоставима по точности с Chai-1, закрытой репликацией AlphaFold3. Обе модели демонстрируют схожие показатели среднего LDDT и среднего TM-score.

Boltz-1 продемонстрировала преимущество в предсказании взаимодействия белок-лиганд на наборе данных CASP15.

Прикладная реализация инференса, доступная в репозитории на Github, может принимать на вход форматы:

🟢Fasta file, для большинства кейсов использования;
🟢Комплексная YAML-схема для более сложных случаев;
🟢Каталог с файлами для пакетной обработки.

Подробные инструкции для процесса прогнозирования и дообучения опубликованы в репозитории с кодом.

▶️Локальный инференс:

# Install boltz with PyPI
pip install boltz

# run inference
boltz predict input_path


📌Лицензирование: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #3D #Biomolecular
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥1110