TediGAN: Text-Guided Diverse Face Image Generation and Manipulation in PyTorch.
Github: https://github.com/IIGROUP/TediGAN
Dataset: https://github.com/IIGROUP/Multi-Modal-CelebA-HQ-Dataset
Paper: https://arxiv.org/abs/2104.08910v1
@ai_machinelearning_big_data
Github: https://github.com/IIGROUP/TediGAN
Dataset: https://github.com/IIGROUP/Multi-Modal-CelebA-HQ-Dataset
Paper: https://arxiv.org/abs/2104.08910v1
@ai_machinelearning_big_data
Graph-based Neural Structured Learning in TFX | TensorFlow
https://www.tensorflow.org/tfx/tutorials/tfx/neural_structured_learning
Code: https://github.com/tensorflow/tfx/blob/master/docs/tutorials/tfx/neural_structured_learning.ipynb
@ai_machinelearning_big_data
https://www.tensorflow.org/tfx/tutorials/tfx/neural_structured_learning
Code: https://github.com/tensorflow/tfx/blob/master/docs/tutorials/tfx/neural_structured_learning.ipynb
@ai_machinelearning_big_data
TensorFlow
Graph-based Neural Structured Learning in TFX | TensorFlow
VideoGPT: Video Generation using VQ-VAE and Transformers
Github: https://github.com/wilson1yan/VideoGPT
Paper: https://arxiv.org/abs/2104.10157
Demo: https://gradio.app/g/AK391/VideoGPT
Latent Video Transformer: https://arxiv.org/abs/2006.10704
@ai_machinelearning_big_data
Github: https://github.com/wilson1yan/VideoGPT
Paper: https://arxiv.org/abs/2104.10157
Demo: https://gradio.app/g/AK391/VideoGPT
Latent Video Transformer: https://arxiv.org/abs/2006.10704
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🌐 MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection
Github: https://github.com/open-mmlab/mmdetection3d
Paper: https://arxiv.org/abs/2104.10956v1
@ai_machinelearning_big_data
Github: https://github.com/open-mmlab/mmdetection3d
Paper: https://arxiv.org/abs/2104.10956v1
@ai_machinelearning_big_data
Token Labeling: Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet
Github: https://github.com/zihangJiang/TokenLabeling
Paper: https://arxiv.org/abs/2104.10858v2
@ai_machinelearning_big_data
Github: https://github.com/zihangJiang/TokenLabeling
Paper: https://arxiv.org/abs/2104.10858v2
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
EigenGAN
TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs
Github: https://github.com/LynnHo/EigenGAN-Tensorflow
Paper: https://arxiv.org/abs/2104.12476v1
@ai_machinelearning_big_data
TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs
Github: https://github.com/LynnHo/EigenGAN-Tensorflow
Paper: https://arxiv.org/abs/2104.12476v1
@ai_machinelearning_big_data
Leveraging Machine Learning for Game Development
https://ai.googleblog.com/2021/03/leveraging-machine-learning-for-game.html
Habr: https://habr.com/ru/company/google/blog/553346/
@ai_machinelearning_big_data
https://ai.googleblog.com/2021/03/leveraging-machine-learning-for-game.html
Habr: https://habr.com/ru/company/google/blog/553346/
@ai_machinelearning_big_data
Understanding Autoencoders With Examples
https://www.nbshare.io/notebook/86916405/Understanding-Autoencoders-With-Examples/
@ai_machinelearning_big_data
https://www.nbshare.io/notebook/86916405/Understanding-Autoencoders-With-Examples/
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🔥Self-Supervised Vision Transformers with DINO
Github: https://github.com/facebookresearch/dino
Facebook blog: https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training
Paper: https://arxiv.org/abs/2104.14294
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/dino
Facebook blog: https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training
Paper: https://arxiv.org/abs/2104.14294
@ai_machinelearning_big_data
🚀 This is an open source toolkit called s3prl, which stands for Self-Supervised Speech Pre-training and Representation Learning
Github: https://github.com/s3prl/s3prl
Paper: https://arxiv.org/abs/2105.01051v1
@ai_machinelearning_big_data
Github: https://github.com/s3prl/s3prl
Paper: https://arxiv.org/abs/2105.01051v1
@ai_machinelearning_big_data
Image classification with TensorFlow Lite Model Maker
https://www.tensorflow.org/lite/tutorials/model_maker_image_classification
💻 Colab
@ai_machinelearning_big_data
https://www.tensorflow.org/lite/tutorials/model_maker_image_classification
⚙
Code💻 Colab
@ai_machinelearning_big_data
TensorFlow
Image classification with TensorFlow Lite Model Maker
🔥 Synthesizing Light Field From a Single Image with Variable MPI and Two Network Fusion
Github: https://github.com/Turmac/light_field_synthesis
Project: https://people.engr.tamu.edu/nimak/Papers/SIGAsia2020_LF/index.html
Ru: https://neurohive.io/ru/novosti/two-cnn-for-photos/
Paper: https://people.engr.tamu.edu/nimak/Papers/SIGAsia2020_LF/resource/SIGGRAPH_2020_Light_Field_Authors_version.pdf
Dataset: https://drive.google.com/file/d/1oHywOJAAYm8YrSH5mDubjTAwN8jrCC9y/view
@ai_machinelearning_big_data
Github: https://github.com/Turmac/light_field_synthesis
Project: https://people.engr.tamu.edu/nimak/Papers/SIGAsia2020_LF/index.html
Ru: https://neurohive.io/ru/novosti/two-cnn-for-photos/
Paper: https://people.engr.tamu.edu/nimak/Papers/SIGAsia2020_LF/resource/SIGGRAPH_2020_Light_Field_Authors_version.pdf
Dataset: https://drive.google.com/file/d/1oHywOJAAYm8YrSH5mDubjTAwN8jrCC9y/view
@ai_machinelearning_big_data
💬 How to Fine Tune BERT for Text Classification using Transformers in Python
https://www.thepythoncode.com/article/finetuning-bert-using-huggingface-transformers-python
Code: https://www.thepythoncode.com/code/finetuning-bert-using-huggingface-transformers-python
Dataset: https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
@ai_machinelearning_big_data
https://www.thepythoncode.com/article/finetuning-bert-using-huggingface-transformers-python
Code: https://www.thepythoncode.com/code/finetuning-bert-using-huggingface-transformers-python
Dataset: https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
@ai_machinelearning_big_data
⚽️ Advancing sports analytics through AI research
🔥 Deepmind blog : https://deepmind.com/blog/article/advancing-sports-analytics-through-ai
A Dataset and Benchmarks: https://soccer-net.org/
Dataset: https://github.com/statsbomb/open-data
Paper: https://sites.google.com/view/ijcai-aisa-2021/
@ai_machinelearning_big_data
🔥 Deepmind blog : https://deepmind.com/blog/article/advancing-sports-analytics-through-ai
A Dataset and Benchmarks: https://soccer-net.org/
Dataset: https://github.com/statsbomb/open-data
Paper: https://sites.google.com/view/ijcai-aisa-2021/
@ai_machinelearning_big_data
🤖 Conversational AI Chatbot with Transformers in Python
https://www.thepythoncode.com/article/conversational-ai-chatbot-with-huggingface-transformers-in-python
Code: https://www.thepythoncode.com/code/conversational-ai-chatbot-with-huggingface-transformers-in-python
Text to speech: https://www.thepythoncode.com/article/convert-text-to-speech-in-python
@ai_machinelearning_big_data
https://www.thepythoncode.com/article/conversational-ai-chatbot-with-huggingface-transformers-in-python
Code: https://www.thepythoncode.com/code/conversational-ai-chatbot-with-huggingface-transformers-in-python
Text to speech: https://www.thepythoncode.com/article/convert-text-to-speech-in-python
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🚘 Highway-env
A collection of environments for autonomous driving and tactical decision-making tasks
Github: https://github.com/eleurent/highway-env
Documentation: https://highway-env.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2105.05701v1
@ai_machinelearning_big_data
A collection of environments for autonomous driving and tactical decision-making tasks
Github: https://github.com/eleurent/highway-env
Documentation: https://highway-env.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2105.05701v1
@ai_machinelearning_big_data
🔥1
Forwarded from Машинное обучение RU
Многослойная нормализация: новый метод улучшения эффективности нейронных сетей
https://neurohive.io/ru/novosti/mnogoslojnaya-normalizaciya-novyj-metod-uluchsheniya-effektivnosti-nejronnyh-setej/
En: https://www.frontiersin.org/articles/10.3389/fnins.2021.626277/full
@machinelearning_ru
https://neurohive.io/ru/novosti/mnogoslojnaya-normalizaciya-novyj-metod-uluchsheniya-effektivnosti-nejronnyh-setej/
En: https://www.frontiersin.org/articles/10.3389/fnins.2021.626277/full
@machinelearning_ru
🧠 Teaching AI how to forget at scale
Video: https://www.youtube.com/watch?v=hI6iJmPgm_k&ab_channel=FacebookAIFacebookAI
Facebook AI: https://ai.facebook.com/blog/teaching-ai-how-to-forget-at-scale/
Github: https://github.com/facebookresearch/transformer-sequential
Paper: https://ai.facebook.com/research/publications/not-all-memories-are-created-equal
@ai_machinelearning_big_data
Video: https://www.youtube.com/watch?v=hI6iJmPgm_k&ab_channel=FacebookAIFacebookAI
Facebook AI: https://ai.facebook.com/blog/teaching-ai-how-to-forget-at-scale/
Github: https://github.com/facebookresearch/transformer-sequential
Paper: https://ai.facebook.com/research/publications/not-all-memories-are-created-equal
@ai_machinelearning_big_data
YouTube
Expire-Span: Teaching AI How to Forget at Scale
As a step toward achieving humanlike memory in machines, we’re announcing Expire-Span, a first-of-its-kind method that equips neural networks with the ability to forget at scale. Learn more on the blog: https://ai.facebook.com/blog/teaching-ai-how-to-forget…
This media is not supported in your browser
VIEW IN TELEGRAM
📷 NeRF Meta Learning With PyTorch
Given a single input view, meta-initialized NeRF can generate a 360-degree video.
Github: https://github.com/sanowar-raihan/nerf-meta
Paper: https://arxiv.org/abs/2012.02189
Original Project Page: https://www.matthewtancik.com/learnit
Official JAX Implementation: https://github.com/tancik/learnit
@ai_machinelearning_big_data
Given a single input view, meta-initialized NeRF can generate a 360-degree video.
Github: https://github.com/sanowar-raihan/nerf-meta
Paper: https://arxiv.org/abs/2012.02189
Original Project Page: https://www.matthewtancik.com/learnit
Official JAX Implementation: https://github.com/tancik/learnit
@ai_machinelearning_big_data
💥DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort
Github: https://nv-tlabs.github.io/datasetGAN/
Article: https://www.infoq.com/news/2021/05/nvidia-dataset-generator/
Ru: https://neurohive.io/ru/novosti/datasetgan-generator-sinteticheskih-annotirovannyh-datasetov-nvidia/
@ai_machinelearning_big_data
Github: https://nv-tlabs.github.io/datasetGAN/
Article: https://www.infoq.com/news/2021/05/nvidia-dataset-generator/
Ru: https://neurohive.io/ru/novosti/datasetgan-generator-sinteticheskih-annotirovannyh-datasetov-nvidia/
@ai_machinelearning_big_data
📕 Font Style that Fits an Image -- Font Generation Based on Image Context
Github: https://github.com/Taylister/FontFits
Paper: https://arxiv.org/abs/2105.08879v1
Dataset creation: https://github.com/Taylister/TGNet-Datagen
@ai_machinelearning_big_data
Github: https://github.com/Taylister/FontFits
Paper: https://arxiv.org/abs/2105.08879v1
Dataset creation: https://github.com/Taylister/TGNet-Datagen
@ai_machinelearning_big_data
👍1