Похоже, становится традицией выпускать кроссворд в конце лета
👨🏫 18 фамилий ученых, в честь которых названы критерии подобия в гидродинамике
🕙 Если интересно, можно посмотреть прошлый кроссворд про моделирование и все, что с этим связанно
👨🏫 18 фамилий ученых, в честь которых названы критерии подобия в гидродинамике
🕙 Если интересно, можно посмотреть прошлый кроссворд про моделирование и все, что с этим связанно
🔥12❤4👍3
Forwarded from Записки доцента
А вы знали, что в IKEA тоже используют ANSYS?
Читаем про новую модель материала *MAT_RRR_POLYMER/*MAT_317 для LS_DYNA, разработанную в коллабе ANSYS и IKEA (1)
[1]
Читаем про новую модель материала *MAT_RRR_POLYMER/*MAT_317 для LS_DYNA, разработанную в коллабе ANSYS и IKEA (1)
[1]
🔥8🌚1😎1
Пятничный мем сам нашел меня в одной работе🎆
"детализированный и всесторонний постобработок"
"детализированный и всесторонний постобработок"
🤣12
Forwarded from Structural Blog
Разбор задачи — МКЭ-модель безраскосной фермы
В голосовании выше мы имеем всего 5% правильных ответов. Это значит, что автору удалось-таки удивить (или запутать) свою аудиторию. Надеюсь, больше первое.
Как уже многие догадались, дьявол кроется в узлах. Конкретно — в их больших габаритах и относительно большой жесткости по сравнению с гибкой частью ригелей и стоек.
Для наглядного анализа этой задачи я подготовил и сравнил 6 расчетных моделей. Их описание и результаты показаны на карточках.
На что хочется обратить внимание:
1. Модель из пластин — эталонная. На этом подробно останавливаться не буду.
2. Эквивалентность условий закрепления моделей — за этим нужно следить. В них часто кроются причины расхождения между стержневыми моделями и моделями из пластин.
3. Сеточная сходимость: особенно важно для моделей из пластин. Особенно, если пластины работают на изгиб в своей плоскости (привет, сдвиговое запирание)
4. Чувствительность к нелинейным эффектам. Расчет произведен в линейной постановке. Это обосновано тем, что при рассматриваемой нагрузке все работает в упругой стадии (эквивалентные напряжения показаны на последней карточке). Влияния эффектов геометрической жесткости тут тоже не предвидится.
Призом личных симпатий хочется отметить модель №3 (расхождение с эталоном 7%). Такой прием локальной детализации узла часто используется на больших схемах. Это позволяет, с одной стороны, корректно учесть жесткость узла и найти его НДС, с другой — не утяжелять всю модель. При этом нужно следить за корректностью стыковки фрагмента со смежными элементами. Для этого концевой узел стержня соединен с торцом узла жесткой вставкой. Это позволяет соблюсти гипотезу плоских сечений на границе узел-стержень.
Модель №5, признанная мною как удачная (расхождение с эталоном 12%), родилась на интуиции. Потому что довольно очевидно, что в модели 4 жесткость узла занижена, а в 6 — завышена.
На разборе подобных задач построена практическая часть моего нового курса КЭ-модели СК.
Через решение и разбор разнообразных кейсов, подобных этому, мы изучаем различные аспекты МКЭ-моделирования. И все это не знания в вакууме — а то, что нужно применять в ежедневной практике, если вы занимаетесь расчетами или хотите ими заниматься по мере профессионального роста.
Буду рад видеть каждого из вас на первом и единственном офлайн-потоке проекта — места еще остались. Переходите на сайт, там собрана вся подробная информация — занимайте свое место, и мы начнем наше совместное развитие уже в следующее воскресенье!
В голосовании выше мы имеем всего 5% правильных ответов. Это значит, что автору удалось-таки удивить (или запутать) свою аудиторию. Надеюсь, больше первое.
Как уже многие догадались, дьявол кроется в узлах. Конкретно — в их больших габаритах и относительно большой жесткости по сравнению с гибкой частью ригелей и стоек.
Для наглядного анализа этой задачи я подготовил и сравнил 6 расчетных моделей. Их описание и результаты показаны на карточках.
На что хочется обратить внимание:
1. Модель из пластин — эталонная. На этом подробно останавливаться не буду.
2. Эквивалентность условий закрепления моделей — за этим нужно следить. В них часто кроются причины расхождения между стержневыми моделями и моделями из пластин.
3. Сеточная сходимость: особенно важно для моделей из пластин. Особенно, если пластины работают на изгиб в своей плоскости (привет, сдвиговое запирание)
4. Чувствительность к нелинейным эффектам. Расчет произведен в линейной постановке. Это обосновано тем, что при рассматриваемой нагрузке все работает в упругой стадии (эквивалентные напряжения показаны на последней карточке). Влияния эффектов геометрической жесткости тут тоже не предвидится.
Призом личных симпатий хочется отметить модель №3 (расхождение с эталоном 7%). Такой прием локальной детализации узла часто используется на больших схемах. Это позволяет, с одной стороны, корректно учесть жесткость узла и найти его НДС, с другой — не утяжелять всю модель. При этом нужно следить за корректностью стыковки фрагмента со смежными элементами. Для этого концевой узел стержня соединен с торцом узла жесткой вставкой. Это позволяет соблюсти гипотезу плоских сечений на границе узел-стержень.
Модель №5, признанная мною как удачная (расхождение с эталоном 12%), родилась на интуиции. Потому что довольно очевидно, что в модели 4 жесткость узла занижена, а в 6 — завышена.
На разборе подобных задач построена практическая часть моего нового курса КЭ-модели СК.
Через решение и разбор разнообразных кейсов, подобных этому, мы изучаем различные аспекты МКЭ-моделирования. И все это не знания в вакууме — а то, что нужно применять в ежедневной практике, если вы занимаетесь расчетами или хотите ими заниматься по мере профессионального роста.
Буду рад видеть каждого из вас на первом и единственном офлайн-потоке проекта — места еще остались. Переходите на сайт, там собрана вся подробная информация — занимайте свое место, и мы начнем наше совместное развитие уже в следующее воскресенье!
❤4🔥2
Forwarded from MagicDPD | CAE магия (Yury Novozhilov)
COMSOL 6.4 - GPU для любой физики!
Итак, коллеги ни много ни мало заявляют, что у них теперь есть GPU решатель для всех видов филики, так как они встроили себе NVIDIA cuDSS - библиотеку для нативной работы Direct Sparse рештаеля СЛАУ на GPU. И это уже звучит как заявка, ооочень крутая заявка. Я буду ждать тестов.
Ну а еще там завезли решатель акустики во временной области, да еще и при помощи явного решателя и тоже GPU-native (NVIDIA CUDA-X cuBLAS library). Круто, завидую!
Ну и как-то почти теряется на этом фоне появление модуля Granular Flow Module для моделирования сыпучих сред в DEM постановке.
https://www.comsol.com/release/6.4
Итак, коллеги ни много ни мало заявляют, что у них теперь есть GPU решатель для всех видов филики, так как они встроили себе NVIDIA cuDSS - библиотеку для нативной работы Direct Sparse рештаеля СЛАУ на GPU. И это уже звучит как заявка, ооочень крутая заявка. Я буду ждать тестов.
Ну а еще там завезли решатель акустики во временной области, да еще и при помощи явного решателя и тоже GPU-native (NVIDIA CUDA-X cuBLAS library). Круто, завидую!
Ну и как-то почти теряется на этом фоне появление модуля Granular Flow Module для моделирования сыпучих сред в DEM постановке.
https://www.comsol.com/release/6.4
COMSOL
COMSOL® Software Version 6.4 Release Highlights
COMSOL Multiphysics® version 6.4 is now available. Check out the major updates and download the software here.
🔥6❤1