🔵 عنوان مقاله
AI in Testing: Hype or Real Progress?
🟢 خلاصه مقاله:
این یادداشت با نگاهی عملگرایانه، دیدگاه Arik Aharoni را درباره نقش واقعی هوش مصنوعی در تست نرمافزار شرح میدهد: او نشان میدهد کجاها AI ارزش ملموس ایجاد کرده و کجاها همچنان اغراق میشود. بهگفته او، AI در تولید اولیه تستها از نیازمندیها، پیشنهاد موارد مرزی، کاهش شکنندگی تستهای UI، شناسایی تستهای flaky، خوشهبندی خطاها، اولویتبندی ریسکمحور و ساخت دادههای آزمایشی مفید است؛ همچنین در بررسیهای بصری و دسترسپذیری میتواند رگرسیونهای ظریف را آشکار کند.
در مقابل، خطاهای مدلهای زبانی، عدم درک عمیق دامنه، محدودیتهای امنیت و حریم خصوصی، و دشواری ارزیابی کیفیت تستهای تولیدی، مانع اعتماد کامل میشوند. «عاملهای» خودمختار تست بدون نظارت انسانی هنوز پایدار نیستند و AI جایگزین طراحی آگاه از معماری، تحلیل ریسک و تأیید انسانی نمیشود.
جمعبندی Aharoni این است: پیشروی واقعی اما تدریجی است. با اجرای آزمایشی کوچک، معیارهای روشن (مانند نرخ کشف عیب و پایداری تست) و جریانهای human-in-the-loop، میتوان از AI در حوزههایی با سیگنال قوی—مثل نگهداشت و تریاژ شکستها—بهره برد؛ AI باید مکمل مهارت تیمهای QA و مهندسی باشد، نه جایگزین آن.
#AIinTesting #SoftwareTesting #QA #TestAutomation #QualityEngineering #LLM #DevOps #TestStrategy
🟣لینک مقاله:
https://cur.at/6kIevSo?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
AI in Testing: Hype or Real Progress?
🟢 خلاصه مقاله:
این یادداشت با نگاهی عملگرایانه، دیدگاه Arik Aharoni را درباره نقش واقعی هوش مصنوعی در تست نرمافزار شرح میدهد: او نشان میدهد کجاها AI ارزش ملموس ایجاد کرده و کجاها همچنان اغراق میشود. بهگفته او، AI در تولید اولیه تستها از نیازمندیها، پیشنهاد موارد مرزی، کاهش شکنندگی تستهای UI، شناسایی تستهای flaky، خوشهبندی خطاها، اولویتبندی ریسکمحور و ساخت دادههای آزمایشی مفید است؛ همچنین در بررسیهای بصری و دسترسپذیری میتواند رگرسیونهای ظریف را آشکار کند.
در مقابل، خطاهای مدلهای زبانی، عدم درک عمیق دامنه، محدودیتهای امنیت و حریم خصوصی، و دشواری ارزیابی کیفیت تستهای تولیدی، مانع اعتماد کامل میشوند. «عاملهای» خودمختار تست بدون نظارت انسانی هنوز پایدار نیستند و AI جایگزین طراحی آگاه از معماری، تحلیل ریسک و تأیید انسانی نمیشود.
جمعبندی Aharoni این است: پیشروی واقعی اما تدریجی است. با اجرای آزمایشی کوچک، معیارهای روشن (مانند نرخ کشف عیب و پایداری تست) و جریانهای human-in-the-loop، میتوان از AI در حوزههایی با سیگنال قوی—مثل نگهداشت و تریاژ شکستها—بهره برد؛ AI باید مکمل مهارت تیمهای QA و مهندسی باشد، نه جایگزین آن.
#AIinTesting #SoftwareTesting #QA #TestAutomation #QualityEngineering #LLM #DevOps #TestStrategy
🟣لینک مقاله:
https://cur.at/6kIevSo?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Software Test Management | Testuff | SaaS Test Management
AI in Testing: Hype or Real Progress? | Software Test Management | Testuff
Discover how AI is reshaping software testing, from self-healing automation to predictive quality insights, and what it means for the future of QA.