Software Engineer Labdon
636 subscribers
43 photos
4 videos
6 files
812 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Selenium tests breaking constantly after every UI change. Is test maintenance really supposed to take this much time?

🟢 خلاصه مقاله:
این مسئله مطرح شد که چرا تست‌های Selenium با هر تغییر در UI می‌شکنند و آیا این حجم از نگه‌داری طبیعی است یا نشانه‌ی مشکل در رویکرد. جامعه‌ی کاربری توصیه کرد وابستگی تست‌ها به جزئیات شکننده‌ی رابط را کم کنند (استفاده از data-test-id)، از الگوهایی مثل Page Object Model برای متمرکزکردن انتخاب‌گرها کمک بگیرند، و طبق Test Pyramid بیشتر پوشش را به لایه‌های Unit/API بدهند و فقط سناریوهای کاربرمحور کلیدی را با end‑to‑end اجرا کنند. برای کاهش test flakiness نیز بر waits مبتنی بر شرایط تجاری، کنترل وضعیت داده و محیط، اجتناب از تاخیرهای ثابت و انیمیشن‌ها، ایزوله‌سازی در CI، mock/stub کردن فراخوانی‌های ناپایدار، و قرنطینه و triage خودکار تست‌های flaky تأکید شد. جمع‌بندی این بود که نگه‌داری سنگین اغلب نتیجه‌ی استفاده‌ی بیش‌ازحد یا کوپلینگ شدید به UI است؛ با راهبردهای درست می‌توان automated tests پایدارتر و کم‌هزینه‌تر داشت.

#Selenium #TestAutomation #FlakyTests #UITesting #SoftwareTesting #QA #CICD #E2E

🟣لینک مقاله:
https://cur.at/Scyp8xS?m=web


👑 @software_Labdon
🔵 عنوان مقاله
AI Is Quietly Rewriting the Career Map for QA Engineers

🟢 خلاصه مقاله:
** هوش مصنوعی مسیر شغلی مهندسان QA را دگرگون کرده و نقش «تستر» را از اجرای تست‌ها به «ارکستراسیون» یک سامانه هوشمند از ابزارها، داده‌ها و ایجنت‌ها تغییر می‌دهد. به‌گفته Ryan Craven، ارزش اصلی QA در طراحی و نظارت بر پایپ‌لاین کیفیت است: انتخاب و اتصال ابزارها، تولید و اولویت‌بندی تست با AI، ایجاد گاردریل‌ها، مدیریت داده و بستن درگاه‌های انتشار بر اساس ریسک کسب‌وکار. مهارت‌ها هم توسعه می‌یابد: از اتوماسیون به Prompt Design، ارزیابی مدل، ایمنی، مدیریت داده، سنجش پوشش سناریویی، و تسلط بر CI/CD، Observability و Feature Flags. کار روزمره شامل تولید و پالایش تست‌های AI، کاهش خطاهای مثبت کاذب، خودترمیمی تست‌های flaky، استفاده از تله‌متری کاربر و بستن حلقه بازخورد تولید است. حاکمیت داده، حریم خصوصی، سوگیری و بازتولیدپذیری تصمیم‌های AI ضروری می‌شود و Human-in-the-loop برای تغییرات پرریسک باقی می‌ماند. عنوان‌های تازه‌ای مانند Quality Platform Engineer، QA Orchestrator و AI Test Strategist شکل می‌گیرد و مرز کار ارشد با SRE و Platform Engineering همپوشانی می‌یابد. جمع‌بندی: QA از اجرای تست‌ها به هماهنگ‌سازی انسان و AI برای ارائه کیفیت با سرعت و مقیاس حرکت می‌کند.

#AI #QA #SoftwareTesting #TestAutomation #QualityEngineering #DevOps #AIOps #CareerDevelopment

🟣لینک مقاله:
https://cur.at/bIOtF9U?m=web


👑 @software_Labdon
👍1
🔵 عنوان مقاله
Secrets Behind 3 Years of Automation Success

🟢 خلاصه مقاله:
Nikolay Advolodkin از Oles Nikaniuk دعوت کرده تا تجربه سه سال موفقیت پایدار در خودکارسازی تست را شرح دهد؛ تمرکزشان بر استراتژی بلندمدت است: انتخاب هوشمندانه ابزارها، تعریف ترکیب درست انواع تست‌ها (با تکیه بر لایه‌های پایین‌تر و مسیرهای حیاتی در UI)، و یکپارچه‌سازی مؤثر با CI/CD برای بازخورد سریع. آن‌ها بر مدیریت دادهٔ تست، کاهش flakyها، اجرای موازی، محیط‌های موقتی و گزارش‌دهی شفاف تأکید می‌کنند و با طراحی ماژولار، بازاستفاده از کتابخانه‌ها، مستندسازی، بازبینی کد و سنجه‌های عملی (پایداری، زمان رفع، پوشش، و زمان عبور در پایپ‌لاین) پایداری و ROI را حفظ می‌کنند. بخش مهمی از موفقیت به فرهنگ همکاری بین توسعه، QA و DevOps، مالکیت مشترک کیفیت و انتشار بهترین رویه‌ها برمی‌گردد. درس‌های کلیدی: کیفیت را بر کمیت ترجیح دهید، تا پایدار شدن جریان‌های متغیر سراغ خودکارسازی آن‌ها نروید، تست‌ها را نزدیک به کد نگه دارید، از feature flagها برای جداسازی انتشار و اعتبارسنجی استفاده کنید، و از همان ابتدا روی زیرساخت و مشاهده‌پذیری سرمایه‌گذاری کنید.

#TestAutomation #CICD #QualityEngineering #DevOps #SoftwareTesting #AutomationStrategy #TestingTools

🟣لینک مقاله:
https://cur.at/sEMpr5K?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Do you use any other test automation pattern than POM?

🟢 خلاصه مقاله:
** بسیاری از تیم‌ها از POM برای جداسازی منطق تست از ساختار UI استفاده می‌کنند، اما تنها گزینه نیست. الگوهایی مثل Screenplay (در Serenity BDD)، الگوی Component/Widget برای UIهای مبتنی بر کامپوننت، و Service Object برای تست‌های API می‌توانند وابستگی به صفحات را کاهش دهند و قابلیت استفاده‌مجدد را افزایش دهند. رویکردهایی مانند Keyword-Driven و Data-Driven، همچنین Model-Based Testing، Property-Based و Contract Testing نیز در شرایط مختلف مکمل یا جایگزین POM هستند. انتخاب الگو به پیچیدگی محصول، تجربه تیم و هزینه نگه‌داری وابسته است؛ بسیاری از تیم‌ها ترکیبی از این الگوها را به‌کار می‌برند. در Reddit نمونه‌ها و تجربه‌های واقعی از این جایگزین‌ها به اشتراک گذاشته شده است.

#TestAutomation #POM #ScreenplayPattern #ModelBasedTesting #KeywordDriven #APITesting #SerenityBDD

🟣لینک مقاله:
https://cur.at/glqmbQa?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Understanding Playwright Agents

🟢 خلاصه مقاله:
**عرضه اخیر Playwright Agents یک گام مهم در خودکارسازی آزمون‌های مرورگری است: به‌جای نوشتن تک‌تک گام‌ها، هدف را توصیف می‌کنید و عامل‌ها با برنامه‌ریزی، اجرا و پایش تکرارشونده، مسیر رسیدن به آن هدف را در مرورگرهای واقعی پیدا می‌کنند. این رویکرد با تکیه بر نقاط قوت Playwright—پوشش چندمرورگری، ابزارهای رهگیری و انتخاب‌گرهای پایدار—زمان ساخت تست را کاهش می‌دهد و نگه‌داری را آسان‌تر می‌کند. معماری هسته شامل سه بخش برنامه‌ریز، اجراکننده و ناظر است که با ترکیب منطق قطعی و استدلال مدل‌محور تلاش می‌کند هم انعطاف‌پذیر باشد و هم قابلیت بازپخش و مشاهده‌پذیری را حفظ کند. Sławomir Radzymiński در یک بررسی عمیق، نحوه کار داخلی این عامل‌ها، الگوی حلقه تصمیم‌گیری، ساخت مدل از DOM و مثال‌های عملی (ورود، پرداخت، و پایدارسازی سناریوهای شکننده) را توضیح می‌دهد و در کنار آن، محدودیت‌ها و بهترین‌روش‌ها را نیز بیان می‌کند: تعریف هدف شفاف، استفاده از data-testid پایدار، محدود کردن عمق اکتشاف، و پین‌کردن محیط در CI. مسیر پیشنهادی پذیرش نیز استفاده از Agent برای اکتشاف و تولید تست‌های اولیه و سپس تثبیت آن‌ها به اسکریپت‌های قطعی Playwright است.

#Playwright #PlaywrightAgents #E2ETesting #BrowserAutomation #TestAutomation #LLM #QA #DevTools

🟣لینک مقاله:
https://cur.at/NqUSz5D?m=web


👑 @software_Labdon
🔵 عنوان مقاله
How I Automated Test Scope Analysis with a CLI Tool

🟢 خلاصه مقاله:
** Josphine Job روند ساخت یک ابزار CLI با Node.js را توضیح می‌دهد که با استفاده از GitHub API تغییرات کد را به‌سرعت تحلیل می‌کند و پیشنهادهای هوشمند برای محدودهٔ تست ارائه می‌دهد. این ابزار با دریافت اطلاعات PR و commitها، فایل‌های تغییرکرده را بررسی و وابستگی‌ها را تحلیل می‌کند و سپس با لایهٔ هوش مصنوعی، سناریوهای تست اولویت‌دار (از واحد تا یکپارچه) پیشنهاد می‌دهد. خروجی می‌تواند در ترمینال، به‌صورت Markdown/JSON، یا به‌عنوان کامنت CI روی PR نمایش داده شود. ملاحظاتی مانند کش‌کردن، رعایت حریم خصوصی، و fallback آفلاین در نظر گرفته شده و هدف، کوتاه‌کردن چرخهٔ بازخورد و افزایش پوشش و اعتماد به تغییرات کد است.

#TestAutomation #CLI #NodeJS #GitHubAPI #AIinTesting #DevTools #CICD #SoftwareQuality

🟣لینک مقاله:
https://cur.at/SDG4cgz?m=web


👑 @software_Labdon
🔵 عنوان مقاله
AI in Testing: Hype or Real Progress?

🟢 خلاصه مقاله:
این یادداشت با نگاهی عمل‌گرایانه، دیدگاه Arik Aharoni را درباره نقش واقعی هوش مصنوعی در تست نرم‌افزار شرح می‌دهد: او نشان می‌دهد کجاها AI ارزش ملموس ایجاد کرده و کجاها همچنان اغراق می‌شود. به‌گفته او، AI در تولید اولیه تست‌ها از نیازمندی‌ها، پیشنهاد موارد مرزی، کاهش شکنندگی تست‌های UI، شناسایی تست‌های flaky، خوشه‌بندی خطاها، اولویت‌بندی ریسک‌محور و ساخت داده‌های آزمایشی مفید است؛ همچنین در بررسی‌های بصری و دسترس‌پذیری می‌تواند رگرسیون‌های ظریف را آشکار کند.

در مقابل، خطاهای مدل‌های زبانی، عدم درک عمیق دامنه، محدودیت‌های امنیت و حریم خصوصی، و دشواری ارزیابی کیفیت تست‌های تولیدی، مانع اعتماد کامل می‌شوند. «عامل‌های» خودمختار تست بدون نظارت انسانی هنوز پایدار نیستند و AI جایگزین طراحی آگاه از معماری، تحلیل ریسک و تأیید انسانی نمی‌شود.

جمع‌بندی Aharoni این است: پیشروی واقعی اما تدریجی است. با اجرای آزمایشی کوچک، معیارهای روشن (مانند نرخ کشف عیب و پایداری تست) و جریان‌های human-in-the-loop، می‌توان از AI در حوزه‌هایی با سیگنال قوی—مثل نگهداشت و تریاژ شکست‌ها—بهره برد؛ AI باید مکمل مهارت تیم‌های QA و مهندسی باشد، نه جایگزین آن.

#AIinTesting #SoftwareTesting #QA #TestAutomation #QualityEngineering #LLM #DevOps #TestStrategy

🟣لینک مقاله:
https://cur.at/6kIevSo?m=web


👑 @software_Labdon