Software Engineer Labdon
653 subscribers
43 photos
5 videos
6 files
851 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
AI Is Quietly Rewriting the Career Map for QA Engineers

🟢 خلاصه مقاله:
** هوش مصنوعی مسیر شغلی مهندسان QA را دگرگون کرده و نقش «تستر» را از اجرای تست‌ها به «ارکستراسیون» یک سامانه هوشمند از ابزارها، داده‌ها و ایجنت‌ها تغییر می‌دهد. به‌گفته Ryan Craven، ارزش اصلی QA در طراحی و نظارت بر پایپ‌لاین کیفیت است: انتخاب و اتصال ابزارها، تولید و اولویت‌بندی تست با AI، ایجاد گاردریل‌ها، مدیریت داده و بستن درگاه‌های انتشار بر اساس ریسک کسب‌وکار. مهارت‌ها هم توسعه می‌یابد: از اتوماسیون به Prompt Design، ارزیابی مدل، ایمنی، مدیریت داده، سنجش پوشش سناریویی، و تسلط بر CI/CD، Observability و Feature Flags. کار روزمره شامل تولید و پالایش تست‌های AI، کاهش خطاهای مثبت کاذب، خودترمیمی تست‌های flaky، استفاده از تله‌متری کاربر و بستن حلقه بازخورد تولید است. حاکمیت داده، حریم خصوصی، سوگیری و بازتولیدپذیری تصمیم‌های AI ضروری می‌شود و Human-in-the-loop برای تغییرات پرریسک باقی می‌ماند. عنوان‌های تازه‌ای مانند Quality Platform Engineer، QA Orchestrator و AI Test Strategist شکل می‌گیرد و مرز کار ارشد با SRE و Platform Engineering همپوشانی می‌یابد. جمع‌بندی: QA از اجرای تست‌ها به هماهنگ‌سازی انسان و AI برای ارائه کیفیت با سرعت و مقیاس حرکت می‌کند.

#AI #QA #SoftwareTesting #TestAutomation #QualityEngineering #DevOps #AIOps #CareerDevelopment

🟣لینک مقاله:
https://cur.at/bIOtF9U?m=web


👑 @software_Labdon
👍1
🔵 عنوان مقاله
Secrets Behind 3 Years of Automation Success

🟢 خلاصه مقاله:
Nikolay Advolodkin از Oles Nikaniuk دعوت کرده تا تجربه سه سال موفقیت پایدار در خودکارسازی تست را شرح دهد؛ تمرکزشان بر استراتژی بلندمدت است: انتخاب هوشمندانه ابزارها، تعریف ترکیب درست انواع تست‌ها (با تکیه بر لایه‌های پایین‌تر و مسیرهای حیاتی در UI)، و یکپارچه‌سازی مؤثر با CI/CD برای بازخورد سریع. آن‌ها بر مدیریت دادهٔ تست، کاهش flakyها، اجرای موازی، محیط‌های موقتی و گزارش‌دهی شفاف تأکید می‌کنند و با طراحی ماژولار، بازاستفاده از کتابخانه‌ها، مستندسازی، بازبینی کد و سنجه‌های عملی (پایداری، زمان رفع، پوشش، و زمان عبور در پایپ‌لاین) پایداری و ROI را حفظ می‌کنند. بخش مهمی از موفقیت به فرهنگ همکاری بین توسعه، QA و DevOps، مالکیت مشترک کیفیت و انتشار بهترین رویه‌ها برمی‌گردد. درس‌های کلیدی: کیفیت را بر کمیت ترجیح دهید، تا پایدار شدن جریان‌های متغیر سراغ خودکارسازی آن‌ها نروید، تست‌ها را نزدیک به کد نگه دارید، از feature flagها برای جداسازی انتشار و اعتبارسنجی استفاده کنید، و از همان ابتدا روی زیرساخت و مشاهده‌پذیری سرمایه‌گذاری کنید.

#TestAutomation #CICD #QualityEngineering #DevOps #SoftwareTesting #AutomationStrategy #TestingTools

🟣لینک مقاله:
https://cur.at/sEMpr5K?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Do you use any other test automation pattern than POM?

🟢 خلاصه مقاله:
** بسیاری از تیم‌ها از POM برای جداسازی منطق تست از ساختار UI استفاده می‌کنند، اما تنها گزینه نیست. الگوهایی مثل Screenplay (در Serenity BDD)، الگوی Component/Widget برای UIهای مبتنی بر کامپوننت، و Service Object برای تست‌های API می‌توانند وابستگی به صفحات را کاهش دهند و قابلیت استفاده‌مجدد را افزایش دهند. رویکردهایی مانند Keyword-Driven و Data-Driven، همچنین Model-Based Testing، Property-Based و Contract Testing نیز در شرایط مختلف مکمل یا جایگزین POM هستند. انتخاب الگو به پیچیدگی محصول، تجربه تیم و هزینه نگه‌داری وابسته است؛ بسیاری از تیم‌ها ترکیبی از این الگوها را به‌کار می‌برند. در Reddit نمونه‌ها و تجربه‌های واقعی از این جایگزین‌ها به اشتراک گذاشته شده است.

#TestAutomation #POM #ScreenplayPattern #ModelBasedTesting #KeywordDriven #APITesting #SerenityBDD

🟣لینک مقاله:
https://cur.at/glqmbQa?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Understanding Playwright Agents

🟢 خلاصه مقاله:
**عرضه اخیر Playwright Agents یک گام مهم در خودکارسازی آزمون‌های مرورگری است: به‌جای نوشتن تک‌تک گام‌ها، هدف را توصیف می‌کنید و عامل‌ها با برنامه‌ریزی، اجرا و پایش تکرارشونده، مسیر رسیدن به آن هدف را در مرورگرهای واقعی پیدا می‌کنند. این رویکرد با تکیه بر نقاط قوت Playwright—پوشش چندمرورگری، ابزارهای رهگیری و انتخاب‌گرهای پایدار—زمان ساخت تست را کاهش می‌دهد و نگه‌داری را آسان‌تر می‌کند. معماری هسته شامل سه بخش برنامه‌ریز، اجراکننده و ناظر است که با ترکیب منطق قطعی و استدلال مدل‌محور تلاش می‌کند هم انعطاف‌پذیر باشد و هم قابلیت بازپخش و مشاهده‌پذیری را حفظ کند. Sławomir Radzymiński در یک بررسی عمیق، نحوه کار داخلی این عامل‌ها، الگوی حلقه تصمیم‌گیری، ساخت مدل از DOM و مثال‌های عملی (ورود، پرداخت، و پایدارسازی سناریوهای شکننده) را توضیح می‌دهد و در کنار آن، محدودیت‌ها و بهترین‌روش‌ها را نیز بیان می‌کند: تعریف هدف شفاف، استفاده از data-testid پایدار، محدود کردن عمق اکتشاف، و پین‌کردن محیط در CI. مسیر پیشنهادی پذیرش نیز استفاده از Agent برای اکتشاف و تولید تست‌های اولیه و سپس تثبیت آن‌ها به اسکریپت‌های قطعی Playwright است.

#Playwright #PlaywrightAgents #E2ETesting #BrowserAutomation #TestAutomation #LLM #QA #DevTools

🟣لینک مقاله:
https://cur.at/NqUSz5D?m=web


👑 @software_Labdon
🔵 عنوان مقاله
How I Automated Test Scope Analysis with a CLI Tool

🟢 خلاصه مقاله:
** Josphine Job روند ساخت یک ابزار CLI با Node.js را توضیح می‌دهد که با استفاده از GitHub API تغییرات کد را به‌سرعت تحلیل می‌کند و پیشنهادهای هوشمند برای محدودهٔ تست ارائه می‌دهد. این ابزار با دریافت اطلاعات PR و commitها، فایل‌های تغییرکرده را بررسی و وابستگی‌ها را تحلیل می‌کند و سپس با لایهٔ هوش مصنوعی، سناریوهای تست اولویت‌دار (از واحد تا یکپارچه) پیشنهاد می‌دهد. خروجی می‌تواند در ترمینال، به‌صورت Markdown/JSON، یا به‌عنوان کامنت CI روی PR نمایش داده شود. ملاحظاتی مانند کش‌کردن، رعایت حریم خصوصی، و fallback آفلاین در نظر گرفته شده و هدف، کوتاه‌کردن چرخهٔ بازخورد و افزایش پوشش و اعتماد به تغییرات کد است.

#TestAutomation #CLI #NodeJS #GitHubAPI #AIinTesting #DevTools #CICD #SoftwareQuality

🟣لینک مقاله:
https://cur.at/SDG4cgz?m=web


👑 @software_Labdon
🔵 عنوان مقاله
AI in Testing: Hype or Real Progress?

🟢 خلاصه مقاله:
این یادداشت با نگاهی عمل‌گرایانه، دیدگاه Arik Aharoni را درباره نقش واقعی هوش مصنوعی در تست نرم‌افزار شرح می‌دهد: او نشان می‌دهد کجاها AI ارزش ملموس ایجاد کرده و کجاها همچنان اغراق می‌شود. به‌گفته او، AI در تولید اولیه تست‌ها از نیازمندی‌ها، پیشنهاد موارد مرزی، کاهش شکنندگی تست‌های UI، شناسایی تست‌های flaky، خوشه‌بندی خطاها، اولویت‌بندی ریسک‌محور و ساخت داده‌های آزمایشی مفید است؛ همچنین در بررسی‌های بصری و دسترس‌پذیری می‌تواند رگرسیون‌های ظریف را آشکار کند.

در مقابل، خطاهای مدل‌های زبانی، عدم درک عمیق دامنه، محدودیت‌های امنیت و حریم خصوصی، و دشواری ارزیابی کیفیت تست‌های تولیدی، مانع اعتماد کامل می‌شوند. «عامل‌های» خودمختار تست بدون نظارت انسانی هنوز پایدار نیستند و AI جایگزین طراحی آگاه از معماری، تحلیل ریسک و تأیید انسانی نمی‌شود.

جمع‌بندی Aharoni این است: پیشروی واقعی اما تدریجی است. با اجرای آزمایشی کوچک، معیارهای روشن (مانند نرخ کشف عیب و پایداری تست) و جریان‌های human-in-the-loop، می‌توان از AI در حوزه‌هایی با سیگنال قوی—مثل نگهداشت و تریاژ شکست‌ها—بهره برد؛ AI باید مکمل مهارت تیم‌های QA و مهندسی باشد، نه جایگزین آن.

#AIinTesting #SoftwareTesting #QA #TestAutomation #QualityEngineering #LLM #DevOps #TestStrategy

🟣لینک مقاله:
https://cur.at/6kIevSo?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Our Journey Through Optimising Cypress End-to-End Tests

🟢 خلاصه مقاله:
** این مقاله به قلم Omer Keskinkilic مجموعه‌ای از تجربه‌های عملی برای بهینه‌سازی تست‌های انتها‌به‌انتها با Cypress ارائه می‌کند. محورها سه‌گانه‌اند: طراحی درست تست، افزایش سرعت اجرا و نگه‌داری بلندمدت.

در طراحی، تمرکز بر پایداری و خوانایی است: استفاده از selectorهای پایدار مانند data-test، کوچک و متمرکز نگه‌داشتن سناریوها، استخراج گام‌های تکراری به custom commandها و پرهیز از waitهای دلخواه با همگام‌سازی قطعی مبتنی بر وضعیت.

برای سرعت، توصیه‌ها شامل استفاده هدفمند از cy.intercept برای stub کردن ضروری، seed کردن داده، میان‌بر زدن ورود با cy.session، تقسیم مجموعه به smoke و full، موازی‌سازی در CI با Cypress Dashboard، اجرای headless و کش وابستگی‌ها و محدود کردن خروجی‌ها به شکست‌هاست.

در نگه‌داری، ساختار پوشه و نام‌گذاری یک‌دست، کمک‌هزینه‌های DRY به‌جای page objectهای سنگین، مدیریت سریع flakyها (با retry به‌عنوان چاره موقت)، استفاده از TypeScript برای اطمینان بیشتر در utilityها و commandها، و پیکربندی محیط از طریق cypress.config.js و متغیرهای محیطی پیشنهاد می‌شود. با اجرای تدریجی این نکات، مجموعه تست‌های Cypress پایدارتر، سریع‌تر و قابل اتکاتر می‌شود.

#Cypress #E2E #TestAutomation #QA #JavaScript #CI #CypressDashboard #Performance

🟣لینک مقاله:
https://cur.at/YjuFkp3?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Scaling Mobile UI Testing with AI

🟢 خلاصه مقاله:
این مقاله نشان می‌دهد چگونه با تکیه بر AI می‌توان مجموعه آزمون‌های رابط کاربری موبایل را تا بیش از ۱۰هزار مورد گسترش داد، بدون افت در پایداری یا سرعت اجرا. Atakan Karslı تجربه‌ای عملی را روایت می‌کند که در آن با بهره‌گیری از AI برای تولید و نگهداشت آزمون‌ها، اولویت‌بندی سناریوهای مهم، کاهش خطاهای ناپایدار (flakiness) و اجرای موازی روی دستگاه‌های متعدد، هم نرخ موفقیت بالا حفظ شده و هم زمان اجرای کلی کنترل شده است. پیام اصلی مقاله این است که با چرخه بازخورد مداوم، شناسایی و ترمیم آزمون‌های شکننده، و تمرکز بر ارزش پوشش به‌جای تعداد صرف، می‌توان مقیاس‌پذیری واقعی در UI Testing به‌دست آورد و در عین حال سرعت انتشار و اعتماد تیم مهندسی را افزایش داد.

#MobileTesting #UIAutomation #AIinTesting #Scalability #TestAutomation #ContinuousIntegration #QualityEngineering #MobileCI

🟣لینک مقاله:
https://cur.at/LvtHiTY?m=web


👑 @software_Labdon
🔵 عنوان مقاله
How to Migrate Flaky XPath to Stable Native Locators in Appium

🟢 خلاصه مقاله:
** این مقاله به‌قلم Josphine Job نشان می‌دهد چرا استفاده از XPath در Appium اغلب شکننده و کند است و چگونه می‌توان با مهاجرت به locatorهای native (مانند accessibility id و resource-id) پایداری و سرعت تست‌های موبایل را افزایش داد. نویسنده روش‌های عملی برای جایگزینی XPath، افزودن شناسه‌های پایدار با همکاری تیم توسعه و نگهداری آسان‌تر Page Objectها را توضیح می‌دهد. بخش مهم دیگر، نوشتن locatorهای native به‌صورت cross-platform برای iOS و Android است تا با اتکا به نام‌گذاری یکسان در accessibility label یا testID، تست‌ها در هر دو پلتفرم پایدار بمانند و فقط در صورت نیاز از fallbackهای اختصاصی استفاده شود. همچنین استفاده درست از noReset برای اجرای سریع‌تر و fullReset برای محیط‌های تمیز و قابل‌تکرار تشریح می‌شود تا در مجموع، شکنندگی تست‌ها کاهش یافته و اجرای آن‌ها سریع‌تر و قابل اتکا گردد.

#Appium #MobileTesting #XPath #TestAutomation #Android #iOS #QA #Automation

🟣لینک مقاله:
https://cur.at/zxuVQ2?m=web


👑 @software_Labdon
🔵 عنوان مقاله
If you have 100 pages, do you create 100 Page Objects?

🟢 خلاصه مقاله:
اگر در یک اپلیکیشن ۱۰۰ صفحه دارید، آیا باید ۱۰۰ تا Page Objects بسازید؟ Đinh Công Cảnh یادآوری می‌کند که Page Objects قرار نیست نقشه‌ی یک‌به‌یک از UI باشند؛ آن‌ها باید رفتارهای پایدار و معنادار برای کاربر را کپسوله کنند تا تست‌ها خوانا و مقاوم در برابر تغییرات ظاهری بمانند. به‌جای پیروی کورکورانه از ساختار DOM، مرزها را بر اساس «قصد و کار» تعریف کنید: احراز هویت، جست‌وجو، افزودن به سبد، تسویه‌حساب. اجزای تکرارشونده مثل ناوبری، سربرگ، فیلترها، جدول‌ها و مودال‌ها را به صورت component objectهای قابل‌استفاده‌مجدد جدا کنید.

قانون سرانگشتی این است که تعداد Page Objects را نه با تعداد صفحات، بلکه با انسجام مسئولیت‌ها و میزان تغییرپذیری تعیین کنید: گاهی یک صفحه به چند object کوچک‌تر (فرم، لیست، ویجت سبد) نیاز دارد، و گاهی چند صفحه با رفتار مشابه یک object مشترک را به اشتراک می‌گذارند. نام‌گذاری را هدف‌محور کنید و جزییات تعاملی و locatorهای پایدار را در خود Page Objects نگه دارید تا تست‌ها در سطح دامنهٔ کسب‌وکار بیان شوند. از الگوهای مکمل مثل Screenplay Pattern هم می‌توان در دامنه‌های پیچیده بهره گرفت.

نتیجه اینکه عدد «۱۰۰» پاسخی ندارد؛ معیار واقعی، نگهداشت‌پذیری و کاهش اثر موجی تغییرات UI است. پیام اصلی Đinh Công Cảnh درباره شمردن objectها نیست، بلکه ساختن انتزاع‌های درست است تا تست‌ها سریع‌تر تغییر کنند، واضح‌تر بمانند و سخت‌تر بشکنند.

#PageObjects #TestAutomation #UITesting #DesignPatterns #Selenium #QA #SoftwareTesting #Maintainability

🟣لینک مقاله:
https://cur.at/vvybnfG?m=web


👑 @software_Labdon