Software Engineer Labdon
625 subscribers
43 photos
4 videos
2 files
807 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Testing AI features: from 0 to Test Strategy

🟢 خلاصه مقاله:
این مقاله از Thiago Werner با عنوان Testing AI features: from 0 to Test Strategy می‌کوشد خواننده را برای آزمون ویژگی‌های مبتنی بر هوش مصنوعی آماده کند. نویسنده ابتدا مروری کاربردی بر LLMs، MCPs و prompt engineering ارائه می‌دهد و نشان می‌دهد چرا ماهیت غیردترمینیستیک مدل‌ها، تعامل با ابزارها و طراحی پرامپت، روش ارزیابی کیفیت را تغییر می‌دهد. سپس مسیر ساختن یک استراتژی تست را ترسیم می‌کند: تعیین معیارهای کیفیت، ارزیابی آفلاین با دیتاست‌های طلایی و سناریوهای لبه، تست‌های امنیتی و خصمانه، و سنجش‌هایی مانند موفقیت وظیفه، دقت/فکتوالیتی، پایداری، تأخیر و هزینه. در نهایت، بر عملیاتی‌سازی این رویکرد تأکید می‌کند—ادغام با CI/CD، هارنس تست سبک، A/B testing، تله‌متری و مانیتورینگ در تولید، و human-in-the-loop—تا از چند سناریوی کلیدی آغاز کرده و به‌صورت تکرارشونده به یک استراتژی تست بالغ برسیم.

#AI
#AITesting
#LLMs
#PromptEngineering
#MCP
#TestStrategy
#QualityAssurance

🟣لینک مقاله:
https://cur.at/JJGTqaX?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Seriously Testing LLMs

🟢 خلاصه مقاله:
این مقاله به این می‌پردازد که برای آزمون جدی LLMs چه نیاز است. نویسنده با تکیه بر مجموعه‌ای از آزمایش‌ها، نشان می‌دهد چرا اتکا به دمو یا امتیازهای سطحی کافی نیست و چگونه رفتار مدل با تغییر متن راهنما، زمینه و زمان تغییر می‌کند. James Bach در این مسیر روش LARC را معرفی می‌کند؛ رویکردی ساخت‌یافته و اکتشافی برای برنامه‌ریزی، اجرای آزمون‌ها و تفسیر نتایج که بر طراحی موارد تنشی و خصمانه، مشاهده نظام‌مند و بهبود تکرارشونده تأکید دارد تا الگوهای خطا و محدودیت‌های قابلیت اعتماد آشکار شوند. مقاله توضیح می‌دهد که چرا آزمون جامع دشوار و پرهزینه است: خروجی‌های غیرقطعی، نبود داور قطعی برای «درستی»، حساسیت به Prompt و زمینه، به‌روزرسانی‌های مدل که بازتولیدپذیری را می‌شکنند، محدودیت معیارهای کمی، و نیاز به ابزار، داده، محاسبات و داوری انسانی. در نهایت پیشنهاد می‌شود آزمون LLM را یک کار تحقیقاتی-حرفه‌ای ببینیم: اهداف و ریسک‌ها را روشن کنیم، داده‌های متنوع و خصمانه بسازیم، ثبت و رهگیری کامل انجام دهیم، و با اجرای تکرارشونده روش LARC میان عمق و وسعت، خودکارسازی و قضاوت کارشناسی، و هزینه و کفایت تصمیم‌گیری کنیم.

#LLMs #SoftwareTesting #AIQuality #Evaluation #PromptEngineering #Reliability #JamesBach #MachineLearning

🟣لینک مقاله:
https://cur.at/OfLtyHW?m=web


👑 @software_Labdon
👍1