Software Engineer Labdon
632 subscribers
43 photos
4 videos
2 files
810 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Testing AI features: from 0 to Test Strategy

🟢 خلاصه مقاله:
این مقاله از Thiago Werner با عنوان Testing AI features: from 0 to Test Strategy می‌کوشد خواننده را برای آزمون ویژگی‌های مبتنی بر هوش مصنوعی آماده کند. نویسنده ابتدا مروری کاربردی بر LLMs، MCPs و prompt engineering ارائه می‌دهد و نشان می‌دهد چرا ماهیت غیردترمینیستیک مدل‌ها، تعامل با ابزارها و طراحی پرامپت، روش ارزیابی کیفیت را تغییر می‌دهد. سپس مسیر ساختن یک استراتژی تست را ترسیم می‌کند: تعیین معیارهای کیفیت، ارزیابی آفلاین با دیتاست‌های طلایی و سناریوهای لبه، تست‌های امنیتی و خصمانه، و سنجش‌هایی مانند موفقیت وظیفه، دقت/فکتوالیتی، پایداری، تأخیر و هزینه. در نهایت، بر عملیاتی‌سازی این رویکرد تأکید می‌کند—ادغام با CI/CD، هارنس تست سبک، A/B testing، تله‌متری و مانیتورینگ در تولید، و human-in-the-loop—تا از چند سناریوی کلیدی آغاز کرده و به‌صورت تکرارشونده به یک استراتژی تست بالغ برسیم.

#AI
#AITesting
#LLMs
#PromptEngineering
#MCP
#TestStrategy
#QualityAssurance

🟣لینک مقاله:
https://cur.at/JJGTqaX?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Cypress Studio: No-Code Test Generation Now Built In

🟢 خلاصه مقاله:
**جنیفر Shehane از Cypress اعلام کرد که Cypress Studio، قابلیت تولید تست بدون کدنویسی، اکنون به‌صورت پیش‌فرض فعال است و بدون تنظیمات اضافی در دسترس قرار می‌گیرد. به‌زودی نیز قابلیت‌های مبتنی بر AI برای پیشنهاد گام‌ها و_assertion_های تست اضافه می‌شود تا نوشتن سناریوها سریع‌تر و پوشش کامل‌تر شود. این تغییر آستانه ورود را پایین می‌آورد، ضبط تعاملات واقعی کاربر را ساده می‌کند و امکان ادغام و نگه‌داری تست‌ها در جریان‌های مرسوم تیم‌های توسعه و QA را فراهم می‌سازد.

#Cypress #CypressStudio #TestAutomation #NoCode #QA #EndToEndTesting #AITesting #JavaScript

🟣لینک مقاله:
https://cur.at/4pwHxTJ?m=web


👑 @software_Labdon
🔵 عنوان مقاله
The New QA Mindset: Testing AI and LLMs

🟢 خلاصه مقاله:
تست محصولات مبتنی بر AI و به‌ویژه LLMs با نرم‌افزارهای کلاسیک فرق اساسی دارد: خروجی‌ها قطعی نیستند و به داده، پرامپت و زمینه وابسته‌اند. در نتیجه به‌جای «صحت دقیق»، باید کیفیت رفتاری، آستانه‌ها و شواهد آماری را سنجید. این رویکرد مستلزم تعریف معیارهای روشن، ساخت دیتاست‌های ارزیابی باکیفیت، اتکا به human-in-the-loop برای برچسب‌گذاری و تفسیر موارد مرزی، و پوشش سناریوهای متنوع و حتی مخرب (مانند prompt injection) است. جنبه‌های ایمنی، سوگیری، توهین‌آمیز بودن، حریم خصوصی و جلوگیری از hallucination به معیارهای پذیرش تبدیل می‌شوند. علاوه بر ارزیابی آفلاین، باید آزمایش‌های آنلاین، مانیتورینگ مستمر، فیدبک‌لوپ و طبقه‌بندی خطا برای اولویت‌بندی اصلاحات وجود داشته باشد. توصیه کلیدی Vladimir Josifoski این است که داده، پرامپت و سیاست‌ها را به‌عنوان مصنوعات قابل‌تست در نظر بگیرید، از ارزیابی آماری و پیوسته بهره ببرید، و هرجا لازم است قضاوت انسانی را وارد کنید تا کیفیت واقعی تضمین شود.

#AI #LLMs #QA #AITesting #QualityAssurance #MachineLearning #PromptEngineering

🟣لینک مقاله:
https://cur.at/8mbcLve?m=web


👑 @software_Labdon