РНФ
10.1K subscribers
1.67K photos
23 videos
7 files
1.16K links
Официальный канал Российского научного фонда (РНФ)

Сайт: https://rscf.ru

Сайт, посвященный 10-летию Фонда: https://10.rscf.ru

ВК: https://vk.com/rnfpage

Одноклассники: https://ok.ru/rnfpage

По общим вопросам: [email protected]
Download Telegram
🐟 Ученые из Донского государственного технического университета и Южного федерального университета выяснили, как добавки на основе бактерий Bacillus могут улучшить здоровье и рост клариевого сома. Результаты исследования открывают новые возможности для повышения продуктивности аквакультуры.

➡️Ход исследования
В качестве пробиотиков исследователи использовали три штамма бактерий: Bacillus subtilis R1, Bacillus subtilis R4 и Bacillus velezensis R5, изолированных из кишечника здоровых клариевых сомов. Эти бактерии обрабатывали соевыми бобами, а затем измельченные бобы добавляли в рацион рыб.

Эксперимент проводился на 50 молодых сомах (25 — в контрольной группе и 25 — с пробиотиками). Рыб взвешивали с интервалом в 12 дней на протяжении почти двух месяцев.

➡️ Основные результаты
🟠Увеличение массы. Рыбы, получавшие пробиотики, показали прирост массы на 25–29% по сравнению с контрольной группой. Наибольший эффект наблюдался у рыб, кормленных добавками с Bacillus velezensis R5 — их масса увеличилась на 29%.
🟠Иммунный ответ. Пробиотики активировали гены, отвечающие за устойчивость к стрессу, в тканях рыбы. Активность этих генов увеличивалась в мозге, печени, жабрах и мышцах в 2–46 раз в зависимости от органа и штамма бактерий. Это свидетельствует о значительном иммуностимулирующем эффекте.

Применение пробиотиков может ускорить рост клариевого сома, повысить его устойчивость к болезням и стрессу, снизить смертность и улучшить показатели аквакультуры в целом. Это поможет снизить издержки на выращивание рыбы и повысить эффективность производства.

Исследование опубликовано в журнале Fishes.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💊 Химики из Института химии растворов имени Г.А. Крестова РАН нашли способ повысить растворимость лекарства для снижения давления телмисартана в 20 раз.

Это открытие может снизить риск побочных эффектов и сделать лечение сердечно-сосудистых заболеваний более эффективным.

➡️ Ход исследования
Телмисартан плохо растворяется в воде, что усложняет его всасывание и требует высоких доз. Чтобы решить эту проблему, ученые использовали циклодекстрин — молекулу, образующую кольцо с полостью, куда поместили молекулу телмисартана.

Были применены два метода:
💗Перемол телмисартана с циклодекстрином.
💗Растворение в этаноле с последующей сушкой.

Растворимость полученных комплексов проверяли в условиях, имитирующих плазму крови, при температуре от 20 до 40°C.

➡️Основные результаты
💙Повышение растворимости. Комплекс телмисартана с циклодекстрином растворяется в 20 раз лучше чистого препарата при температуре тела человека.
💙Ускоренное действие. Благодаря лучшей растворимости лекарство быстрее всасывается, что сокращает время до начала терапевтического эффекта.
💙Метод перемола. Этот способ оказался более эффективным, обеспечив лучшее взаимодействие между молекулами лекарства и циклодекстрином.

Новая форма телмисартана позволяет использовать более низкие дозы, снижая риск таких побочных эффектов, как инфекции, проблемы с почками и отеки. Методы, примененные в исследовании, можно адаптировать для других плохо растворимых лекарств, что открывает перспективы для создания более безопасных и доступных препаратов.

Исследование опубликовано в журнале Colloids and Surfaces A: Physicochemical and Engineering Aspects

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💎 Начинаем новую неделю с результатов исследования волоконных лазеров

Ученые из МФТИ, ИОФ РАН и МГТУ им. Н.Э. Баумана разработали способ упорядоченной самосборки углеродных нанотрубок, который повышает эффективность лазеров для диагностики заболеваний.

Эта технология увеличивает мощность ультракоротких импульсов на 30% и снижает шумы в лазерном излучении на 25–40%.

➡️Ход исследования
Современные лазеры, используемые для получения высокоточных изображений тканей и органов, сталкиваются с проблемой шумов, что усложняет диагностику. Чтобы решить эту задачу, ученые разработали метод самосборки углеродных нанотрубок:

🟠Нанотрубки смешали с холатом натрия (солью желчной кислоты) и подвергли ультразвуковой обработке.
🟠После медленного высушивания в течение 2–3 суток нанотрубки упорядоченно самособрались в пленки.
🟠Контрольные образцы с хаотичным расположением нанотрубок использовались для сравнительных экспериментов.

Созданные пленки были интегрированы в лазеры и протестированы как фильтры излучения.

➡️ Основные результаты
🔘Эффективность излучения. Лазеры с упорядоченными нанотрубками преобразуют энергию в ультракороткие импульсы на 30% лучше.
🔘Стабильность импульсов. Шумы в излучении уменьшились на 25–40%, что позволило получить более четкие и точные изображения.
🔘Долговечность. Пленки не теряли своих свойств даже после многократного использования.

Новый метод поможет улучшить качество волоконных лазеров и расширить их применение в науке, промышленности и медицине, где необходимы высокая точность рабочих параметров, надежность эксплуатации и стабильность основных характеристик излучения.

Результаты исследования опубликованы в журнале Carbon

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🔬Ученые из Южного федерального университета, ФИЦ химической физики и медицинской химии РАН, а также Северо-Кавказского федерального университета синтезировали 12 новых спиропиранов — органических соединений с регулируемыми свойствами свечения и токсичности.

Это открытие открывает путь к более точной диагностике и эффективному лечению заболеваний.

➡️ Ход исследования
Спиропираны — это молекулы, которые излучают свет в ближнем инфракрасном диапазоне (700+ нм), что делает их идеальными для работы в глубине живых тканей.

В ходе исследования ученые:
🔘Синтезировали 12 новых молекул спиропиранов с разными заместителями и анионами (йодиды, перхлораты, тетрафторбораты).
🔘Изучили их оптические свойства, установив, что все соединения флуоресцируют в диапазоне биологического «окна» (600-1000 нм).
🔘Провели тесты на токсичность, исследуя влияние на бактерии Escherichia coli и Acinetobacter calcoaceticus

➡️ Основные результаты
🔘Флуоресценция. Наибольшую яркость показали фторзамещенные соединения.
🔘Токсичность. Йодидные спиропираны подавляют рост бактериальных клеток и биопленок, что делает их перспективными для борьбы с инфекциями и раковыми клетками.
🔘Безопасность. Перхлоратные и тетрафторборатные соединения подходят для окрашивания живых тканей без повреждений.

Новый подход позволяет управлять свойствами красителей, адаптируя их для конкретных задач: от визуализации биологических процессов до уничтожения патогенов.

Результаты опубликованы в журнале ChemBioChem.

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🏺 Археологи из АНО «Лаборатория доистории», Института истории материальной культуры РАН и Института нефтехимического синтеза им. А.В. Топчиева РАН обнаружили самые древние (возрастом 9–8,5 тысяч лет) керамические изделия на Северном Кавказе.

Находки на стоянке Навес в центре Северного Кавказа подтверждают культурные связи жителей региона с населением Приазовья, Южного Кавказа (территории современных Грузии и Армении) и побережья Каспийского моря.

➡️ Ход исследования
Для определения возраста находок исследователи использовали метод радиоуглеродного датирования.

Анализ включал:
🟠Определение возраста 120 фрагментов керамики.
🟠Изучение каменных изделий из кремня и обсидиана.
🟠Исследование украшений из раковин морских моллюсков и белемнитов.

➡️ Основные результаты
🟠Находки керамических изделий с гребенчатым орнаментом поразительно схожи с артефактами из Приазовья, что указывает на культурные связи между регионами, разделенными сотнями километров.

🟠Обсидиановые и кремневые вкладыши размером 8–12 мм, тщательно обработанные с двух сторон, использовались для изготовления сложных композитных орудий. Для их крепления применялся битум — первое свидетельство использования этого клея на Северном Кавказе.

✔️ Исследование подтверждает, что в эпоху неолита люди совершали дальние путешествия, обменивались технологиями и ресурсами, а также активно взаимодействовали с соседними регионами.

🏹 Дальнейшие исследования будут сосредоточены на изучении происхождения неолитического населения Приэльбрусья, а также на выявлении новых артефактов для понимания культурной и хозяйственной жизни региона.

Результаты опубликованы в журнале L’Anthropologie

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🔬Начинаем четверг с подборки новых исследований в области биологии

1️⃣ Бересклет Максимовича и синтез жирных кислот

Ученые из Института физиологии растений им. К.А. Тимирязева РАН и РУДН создали клеточные культуры бересклета Максимовича, которые открыли новые возможности для синтеза ценных биологических соединений.

📌 Главное:
— Свет стимулирует выработку антоцианов — антиоксидантов, используемых в медицине и пищевой промышленности. Темнота, наоборот, способствует накоплению жирных кислот, необходимых для восстановления нервных тканей.
— Перемещение клеток между светом и тьмой позволяет регулировать синтез соединений: антоцианы возрастали в 8 раз, жирные кислоты уменьшались на 50%.
— Метилжасмонат усиливал выработку антоцианов до 4 раз, жирных кислот — до 5,5 раз.

🎯 Новые технологии позволят производить антоцианы и жирные кислоты для фармацевтики и пищевой промышленности.

Результаты исследования опубликованы в Plant Physiology and Biochemistry

2️⃣ Серотонин и эмбриональное развитие

Исследователи из МГУ и Института биологии развития РАН доказали, что серотонин, известный как «гормон счастья», играет ключевую роль в раннем развитии эмбрионов млекопитающих.

📌 Главное:
— Серотонин участвует в межклеточной коммуникации с первых стадий созревания яйцеклетки и первых делений эмбриона.
— Он накапливается у мембран клеток и выделяется в межклеточное пространство через везикулы.
— Блокировка транспорта серотонина снижает его количество на 50%, что подтверждает его критическую роль.

🎯 Эти данные помогут улучшить качество эмбрионов и разработать новые методы лечения бесплодия.

Результаты исследования опубликованы в International Journal of Molecular Sciences

Оба исследования демонстрируют, как фундаментальная наука служит основой прикладных решений. Работа с клеточными культурами бересклета открывает новые возможности в управлении синтезом ценных соединений, а изучение серотонина в развитии эмбрионов подчеркивает его роль в репродуктивной биологии, открывая перспективы лечения бесплодия и улучшения репродуктивного здоровья.

📰 Читайте подробности на сайте Фонда:
➡️ О синтезе новых культур из клеток бересклета Максимовича
➡️ О роли серотонина в эмбриональном развитии

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🦠Ученые из Саратовского государственного университета имени Н.Г. Чернышевского разработали безопасный и доступный метод для создания рецепторов, способных связывать опасный микотоксин зеараленон.

Этот токсин, вырабатываемый плесневыми грибами, поражает зерновые культуры и наносит вред репродуктивной системе сельскохозяйственных животных.

Новая разработка снижает затраты на создание тест-систем для выявления микотоксинов и может быть использована в агропромышленности для защиты урожая.

➡️Ход исследования
Для создания рецепторов использовали метод биоимпринтинга:
🔴Подобрали безопасный структурный аналог токсина с помощью компьютерного моделирования.
🔴Получили «обученный» белок на основе бычьего сывороточного альбумина.
🔴Нанесли белок на наночастицы оксида кремния, что увеличило его связывающую способность.
🔴Проверили эффективность рецептора на зараженных зерновых культурах с использованием хроматографии.

➡️ Основные результаты
🔴Новый рецептор удаляет до 73% токсина, что сравнимо с показателями использования природного микотоксина (82%).
🔴Наночастицы можно использовать повторно в 70% случаев, что повышает экономическую эффективность метода.
🔴Рецепторы безопасны для живых клеток, что делает их перспективными для использования в организме сельскохозяйственных животных.

Разработка поможет создать более доступные тест-системы для выявления токсинов, а также сорбенты для их обезвреживания в корме и воде для сельскохозяйственных животных.

🔎 Дальнейшие исследования сосредоточатся на создании новых материалов для агропромышленности и усовершенствовании рецепторов для тест-систем.

Результаты опубликованы в журнале Microchimica Acta

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💬 «Успешный прикладной проект помогут сделать люди, думающие не так, как вы»

В 2024 году успешно завершилась первая фаза клинических исследований «АнтионкоРАН-М» — первого российского невирусного генотерапевтического препарата для лечения рака, получившего разрешение Минздрава на проведение испытаний. Разработкой препарата, которая уже на доклиническои этапе показала впечатляющие результаты, занималась научная группа генной иммуноонкотерапии ИБХ РАН.

➡️Должен ли ученый быть менеджером?
➡️Существует ли секрет успешного прикладного проекта?
➡️Что ожидает биомедицину в будущем?

На эти и другие вопросы в интервью журналу «Открывай с РНФ» отвечает Ирина Алексеенко, к.б.н., руководитель группы генной иммуноонкотерапии ИБХ РАН, заместитель директора Московского центра инновационных технологий в здравоохранении

🔗О том, какой сложный путь проходит научная идея от озарения до воплощения, читайте в новом интервью РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💡Начинаем новый день с двух впечатляющих научных исследований в области инженерных наук.

1️⃣ Новый тип усилителей для оптоволокна

Ученые из Института общей физики им. А.М. Прохорова и Института химии высокочистых веществ им. Г.Г. Девятых разработали новый тип усилителя для оптоволоконных кабелей.

📌 Главное:
— Вместо эрбия был использован висмут, который люминесцирует в ближнем инфракрасном спектре, подходящем для телекоммуникационных сетей.
— Устройство усиливает сигнал с длинами волн от 1250 до 1500 нанометров, что обеспечивает рекордную полосу пропускания (250 нм).
— Теоретически, с таким усилителем можно передавать в 5 раз больше данных в секунду, чем по стандартным оптоволокнам.

Результаты опубликованы в Journal of Lightwave Technology

2️⃣ Солитонные молекулы для квантовых вычислений

Ученые из Московского государственного технического университета им. Н. Э. Баумана и Института общей физики им. А.М. Прохорова разработали метод формирования солитонных молекул — стабильных групп световых импульсов, которые могут быть использованы для создания запутанных квантовых состояний.

📌 Главное:
— В качестве источника энергии использовался лазерный диод, излучение которого, проходя через кольцевой волоконный резонатор, формировало стабильные импульсы.
— Лазерная установка может генерировать до 14 связанных ультракоротких лазерных импульсов.
— Эти импульсы отличаются низким уровнем шумов и высокой стабильностью, что делает запутанные состояния более устойчивыми к ошибкам.

Результаты опубликованы в Applied Optics

Новый усилитель для оптоволокна может значительно увеличить объем передаваемых данных, а работа с солитонными молекулами приближает к созданию мощных квантовых компьютеров и вычислительных систем.

📰 Читайте подробности на сайте РНФ:

➡️ О новом типе усилителей для оптоволокна
➡️ О солитонных молекулах для квантовых технологий

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧦 Научные итоги года: топ-10 открытий с РНФ и телеканалом «Наука»

Каждый год российские ученые совершают тысячи научных открытий, которые меняют наше представление о мире. Вместе с ними мы узнаем больше о полезных и вредных продуктах, загадочных физических явлениях и жизни далеких предков. Результаты исследований помогают лечить сложные заболевания, выявлять мошенников, создавать экологичное топливо из отходов и разрабатывать человекоподобный искусственный интеллект.

Эти и многие другие важные проекты поддерживает Российский научный фонд.

К концу 2024 года ведущие эксперты РНФ выбрали топ-10 ярких достижений российской науки.

▶️ Смотрите наш специальный видеоролик и читайте подробности на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM