РНФ
9.81K subscribers
1.65K photos
23 videos
7 files
1.14K links
Официальный канал Российского научного фонда (РНФ)

Сайт: https://rscf.ru

Сайт, посвященный 10-летию Фонда: https://10.rscf.ru

ВК: https://vk.com/rnfpage

Одноклассники: https://ok.ru/rnfpage

По общим вопросам: [email protected]
Download Telegram
🔬 Катализатор для переработки парниковых газов, графен для обеззараживания воды и технологии для производства глинозема: подборка исследований грантополучателей в области инженерных наук

1⃣ Ученые из РУДН разработали катализатор на основе никеля с примесью меди, который с 95% эффективностью превращает этанол в синтез-газ — ключевой продукт для химической промышленности и энергетики.

Катализатор на основе никеля с добавлением меди (1–50%) стабильно превращает этанол в синтез-газ — смесь водорода и угарного газа, которая используется в химической промышленности и энергетике. При этом этанол может быть получен из углекислого газа, что открывает перспективы утилизации парниковых газов.

🚀 Впереди — тестирование катализаторов для переработки других соединений, таких как глицерин и метан.

Результаты опубликованы в The Journal of Physical Chemistry C

📰 Подробнее — на сайте РНФ

2⃣ Ученые из НИУ «МЭИ» выяснили, что жидкости с графеновыми нанохлопьями испаряются на 95% быстрее, чем чистая вода, под действием слабого солнечного света. Они также преобразуют солнечное излучение в тепловую энергию на 48% эффективнее.

Графеновые наножидкости под воздействием зеленого и ближнего инфракрасного света нагреваются быстрее, чем чистая вода, и испаряются на 68–95% эффективнее под солнечным светом.

🚀 Это делает их перспективными для преобразования солнечной энергии в тепло и получения пресной воды.

Результаты опубликованы в журнале Solar Energy

📰 Подробнее — на сайте РНФ

3⃣ Ученые из России и Китая разработали энергоэффективный способ получения глинозема из угольной золы — отхода угольных электростанций.

Новая технология снижает энергозатраты на 30% благодаря использованию бемита вместо гиббсита. Максимальная эффективность осаждения достигнута при 88%, что делает процесс экономически выгодным.

🚀 Этот подход не только удешевляет производство алюминия, но и способствует утилизации миллионов тонн золошлаков, загрязняющих природу.

Результаты исследования опубликованы в Journal of Cleaner Production

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🌾 Ученые из ФИЦ «Коми научный центр УрО РАН» доказали, что лигнин — природный полимер, извлеченный из овса, — не только безопасен для организма, но и обладает уникальными лечебными свойствами. Это может открыть новые возможности в борьбе с последствиями радиационного облучения.

➡️ Ход эксперимента
Исследователи химически выделили лигнин из стеблей овса Avena sativa и протестировали его на клетках человека и лабораторных мышах. В первой фазе эксперимента ученые вводили раствор лигнина мышам в различных дозах, проверяя его безопасность. Во второй фазе грызуны получали препарат ежедневно на протяжении 1–8 месяцев.

➡️ Основные результаты
🟣 Костный мозг и половые железы. Лигнин стимулирует уничтожение клеток с поврежденной ДНК, предотвращая их накопление в тканях, которые подвержены частому делению.
🟣 Фертильность. У самцов прием лигнина увеличил выработку половых клеток на 30% и уменьшил количество дефектных сперматозоидов на 35%. У самок благоприятная для зачатия стадия цикла удлинилась на 15%.
🟣 Когнитивные способности. Лигнин снижал тревожность и стимулировал исследовательское поведение у мышей.

Исследование подтвердило, что лигнин можно использовать для разработки препаратов, предотвращающих повреждения в тканях от радиации. Также ученые планируют изучить лигнины из других растений, что расширит спектр потенциальных биомедицинских препаратов.

Результаты исследования опубликованы в International Journal of Biological Macromolecules.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 Ученые из СПбГУ, Института общей генетики имени Н.И. Вавилова РАН
и Санкт-Петербургского политехнического университета Петра Великого впервые доказали, что амилоиды — белки, обычно связанные с нейродегенеративными заболеваниями, — играют ключевую роль в развитии плодовых мушек. Открытие может изменить наше понимание их функции у позвоночных, включая человека.

➡️ Ход эксперимента
Биологи исследовали яйца плодовых мушек Drosophila melanogaster, выделив белок s36, устойчивый к разрушающим химическим веществам. Его амилоидную природу подтвердили с помощью специфических красителей. Ученые изучили роль s36, сравнив нормальных мух с мутантами, чьи яйца были дефектными из-за отсутствия накопления этого белка.

➡️ Основные результаты
🔴Структура яйца. Амилоид s36 локализуется в микропиле (области проникновения сперматозоида) и плавательных усиках, обеспечивая оплодотворение и защиту яйца.
🔴Генетические дефекты. У мутантных самок яйца были нежизнеспособны из-за разрушенной структуры оболочки, что указывает на критическую роль амилоидов в развитии.
🔴Эволюционный потенциал. Амилоиды могут участвовать в формировании органов и тканей не только у насекомых, но и у позвоночных.

Исследование впервые подтвердило, что амилоиды могут выполнять созидательные функции в биологии, регулируя клеточные взаимодействия, необходимые для развития. Это открытие важно не только для понимания эволюции, но и для разработки новых подходов к изучению нейродегенерации и нейровоспалений.

Результаты опубликованы в International Journal of Molecular Sciences.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🪨 Ученые из АНО «Лаборатория доистории» выяснили, что люди Центрального Кавказа 18–10 тысяч лет назад использовали обсидиан из одного месторождения и добывали кремень из десятков источников, включая удаленные на 200–250 километров. Это открытие проливает свет на культурные связи древнего населения и их хозяйственную стратегию.

➡️ Ход исследования
Археологи изучили каменные артефакты из двух стоянок эпохи эпипалеолита — грота Сосруко и навеса Псытуаже (Кабардино-Балкария).

Используя петроархеологические методы, ученые:
🔸Картировали месторождения кремня и обсидиана;
🔸 Провели геохимический анализ находок, чтобы определить источники сырья;
🔸 Исследовали более 13,5 тысяч артефактов для оценки качества и происхождения камня.

➡️ Основные результаты
🔸Источники обсидиана. Все находки из обеих стоянок связаны с Заюковским месторождением: 20–30 км — для жителей грота Сосруко, 6–7 км — для Псытуаже.
🔸Редкий оранжевый кремень. Обнаруженные образцы доставляли с расстояния 200–250 км, что указывает на контакты с Северо-Западным Кавказом.
🔸Качество сырья. Жители выбирали высококачественный кремень и обсидиан, даже если местное сырье было ближе, но менее пригодно для изготовления охотничьих орудий.

Практическая значимость
Открытие демонстрирует, как древние жители Кавказа выстраивали сложные стратегии использования ресурсов, совершая многодневные переходы для добычи высококачественного сырья, и подтверждает существование культурных и торговых связей между регионами, что расширяет понимание их социально-экономических отношений.

🎯 Дальнейшие исследования сосредоточатся на изучении нижних слоев грота Сосруко, чтобы выяснить, менялись ли источники сырья на ранних этапах заселения региона.

Результаты опубликованы в журнале L'Anthropologie

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🔬Начинаем новую неделю с результатов исследования в области клеточной биологии

Биологи из Института молекулярной биологии имени Энгельгардта (РАН) совместно с коллегами из МГУ им. М.В. Ломоносова, Университета имени Отто фон Герике (Германия) и Каролинского института (Швеция) выяснили, что белок p62, известный как «уборщик», может активировать каспазу-2 — фермент, запускающий апоптоз, программируемую клеточную гибель. Это открытие помогает объяснить, как организм защищается от мутаций, и проливает свет на механизмы развития заболеваний печени.

➡️ Ход исследования
Ученые изучили взаимодействие белков в клетках человека, включая раковые и эмбриональные. Используя молекулярные методы, они обнаружили, что белок p62 может связываться с каспазой-2, влияя на её активность. Для подтверждения механизмов ученые проводили эксперименты с противоопухолевым препаратом цисплатином, вызывающим клеточную гибель.

➡️ Основные результаты
🔴Клеточная защита. Связывание p62 и каспазы-2 препятствует клеточной гибели при нормальных условиях, но запускает её в ответ на ДНК-повреждения.
🔴Заболевания печени. Выявленный механизм регуляции каспазы-2 с помощью p62 может лежать в основе развития неалкогольного стеатогепатита — заболевания печени, которое может прогрессировать в цирроз и рак печени.
🔴Двойная роль. Белок p62 может либо разрушать каспазу-2, либо активировать её, в зависимости от контекста.

Результаты помогут разработать новые подходы к терапии рака и заболеваний печени, а также улучшить понимание механизмов регуляции клеточной гибели.

Результаты опубликованы в журнале Cell Death & Disease

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🧲Ученые из Института общей и неорганической химии имени Н.С. Курнакова (РАН) совместно с коллегами из ФИАН и Курчатовского института разработали магниточувствительные материалы на основе арсенида кадмия с добавлением хрома. Эти материалы перспективны для создания устройств магнитной памяти, сенсоров и микроэлектроники нового поколения.

➡️Ход исследования
Ученые синтезировали материалы, добавив хром в арсенид кадмия в концентрациях от 1 до 6% и сплавив их при температуре 740°C. Анализ химического состава и микроструктуры показал, что в результате образовались три фазы:
🟠Арсенид кадмия — 96,4% сплава.
🟠Арсенид хрома — 1,6%.
🟠Кадмий — 2%, который формирует отдельные светлые вкрапления.

Микроскопический анализ подтвердил, что предел «растворимости» кадмия в материале крайне низок — менее 0,1%.

➡️ Основные результаты
🟠Точная настройка свойств. Состав и структура позволяют регулировать магнитные характеристики для различных приложений.
🟠Прогнозируемые фазы. Данные о фазовых равновесиях помогут создавать материалы с заданными свойствами.
🟠Практическая применимость. Материалы перспективны для магнитной памяти, сенсоров и микроэлектронных устройств.

Полученные результаты открывают путь к разработке энергоэффективных устройств, работающих на основе спин-управляемых структур.

Исследование опубликовано в журнале Vacuum.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🛰️ Ученые из Института металлургии и материаловедения имени А.А. Байкова (РАН) совместно с коллегами из МГУ, Сеченовского университета и других научных центров впервые синтезировали 3D-аналоги костной ткани в условиях микрогравитации на борту Международной космической станции. Эти материалы перспективны для регенерации костей как на Земле, так и в длительных космических миссиях.

➡️ Ход исследования
Для синтеза материалов использовался магнитный биоассемблер — устройство, позволяющее формировать ткани под действием магнитных полей.

Процесс проходил в два этапа:
1️⃣ Подготовка образцов:
🟣В биоассемблер загрузили раствор фосфата кальция — биосовместимого вещества, химически близкого к костной ткани.
🟣Эксперименты проводились параллельно на МКС (микрогравитация) и на Земле (гравитация присутствует).

2️⃣ Синтез ткани:
🟣В обоих случаях за 48 часов сформировались 3D-аналоги костной тканиразмером ~5 мм.
🟣Образцы доставили на Землю для анализа.

Анализ структуры показал, что микрогравитация существенно улучшает свойства материала: кристаллы фосфата кальция на МКС росли равномерно, образуя упорядоченную структуру.

➡️ Основные результаты
🟣Упорядоченная структура. Образцы с МКС имеют более однородную кристаллическую структуру, что способствует лучшей адгезии клеток.
🟣Ускоренное заживление. Доклинические испытания на крысах показали, что «космические» материалы стимулируют более активное восстановление костной ткани по сравнению с земными аналогами.
🟣Перспективы применения. Разработанные материалы могут использоваться как в медицине на Земле (хирургия, стоматология), так и для лечения травм в космосе.

✔️ Полученные результаты подтверждают преимущества микрогравитации для создания биоматериалов нового поколения.

Исследование опубликовано в журнале Biomedical Technology.

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🐟 Ученые из Донского государственного технического университета и Южного федерального университета выяснили, как добавки на основе бактерий Bacillus могут улучшить здоровье и рост клариевого сома. Результаты исследования открывают новые возможности для повышения продуктивности аквакультуры.

➡️Ход исследования
В качестве пробиотиков исследователи использовали три штамма бактерий: Bacillus subtilis R1, Bacillus subtilis R4 и Bacillus velezensis R5, изолированных из кишечника здоровых клариевых сомов. Эти бактерии обрабатывали соевыми бобами, а затем измельченные бобы добавляли в рацион рыб.

Эксперимент проводился на 50 молодых сомах (25 — в контрольной группе и 25 — с пробиотиками). Рыб взвешивали с интервалом в 12 дней на протяжении почти двух месяцев.

➡️ Основные результаты
🟠Увеличение массы. Рыбы, получавшие пробиотики, показали прирост массы на 25–29% по сравнению с контрольной группой. Наибольший эффект наблюдался у рыб, кормленных добавками с Bacillus velezensis R5 — их масса увеличилась на 29%.
🟠Иммунный ответ. Пробиотики активировали гены, отвечающие за устойчивость к стрессу, в тканях рыбы. Активность этих генов увеличивалась в мозге, печени, жабрах и мышцах в 2–46 раз в зависимости от органа и штамма бактерий. Это свидетельствует о значительном иммуностимулирующем эффекте.

Применение пробиотиков может ускорить рост клариевого сома, повысить его устойчивость к болезням и стрессу, снизить смертность и улучшить показатели аквакультуры в целом. Это поможет снизить издержки на выращивание рыбы и повысить эффективность производства.

Исследование опубликовано в журнале Fishes.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💊 Химики из Института химии растворов имени Г.А. Крестова РАН нашли способ повысить растворимость лекарства для снижения давления телмисартана в 20 раз.

Это открытие может снизить риск побочных эффектов и сделать лечение сердечно-сосудистых заболеваний более эффективным.

➡️ Ход исследования
Телмисартан плохо растворяется в воде, что усложняет его всасывание и требует высоких доз. Чтобы решить эту проблему, ученые использовали циклодекстрин — молекулу, образующую кольцо с полостью, куда поместили молекулу телмисартана.

Были применены два метода:
💗Перемол телмисартана с циклодекстрином.
💗Растворение в этаноле с последующей сушкой.

Растворимость полученных комплексов проверяли в условиях, имитирующих плазму крови, при температуре от 20 до 40°C.

➡️Основные результаты
💙Повышение растворимости. Комплекс телмисартана с циклодекстрином растворяется в 20 раз лучше чистого препарата при температуре тела человека.
💙Ускоренное действие. Благодаря лучшей растворимости лекарство быстрее всасывается, что сокращает время до начала терапевтического эффекта.
💙Метод перемола. Этот способ оказался более эффективным, обеспечив лучшее взаимодействие между молекулами лекарства и циклодекстрином.

Новая форма телмисартана позволяет использовать более низкие дозы, снижая риск таких побочных эффектов, как инфекции, проблемы с почками и отеки. Методы, примененные в исследовании, можно адаптировать для других плохо растворимых лекарств, что открывает перспективы для создания более безопасных и доступных препаратов.

Исследование опубликовано в журнале Colloids and Surfaces A: Physicochemical and Engineering Aspects

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💎 Начинаем новую неделю с результатов исследования волоконных лазеров

Ученые из МФТИ, ИОФ РАН и МГТУ им. Н.Э. Баумана разработали способ упорядоченной самосборки углеродных нанотрубок, который повышает эффективность лазеров для диагностики заболеваний.

Эта технология увеличивает мощность ультракоротких импульсов на 30% и снижает шумы в лазерном излучении на 25–40%.

➡️Ход исследования
Современные лазеры, используемые для получения высокоточных изображений тканей и органов, сталкиваются с проблемой шумов, что усложняет диагностику. Чтобы решить эту задачу, ученые разработали метод самосборки углеродных нанотрубок:

🟠Нанотрубки смешали с холатом натрия (солью желчной кислоты) и подвергли ультразвуковой обработке.
🟠После медленного высушивания в течение 2–3 суток нанотрубки упорядоченно самособрались в пленки.
🟠Контрольные образцы с хаотичным расположением нанотрубок использовались для сравнительных экспериментов.

Созданные пленки были интегрированы в лазеры и протестированы как фильтры излучения.

➡️ Основные результаты
🔘Эффективность излучения. Лазеры с упорядоченными нанотрубками преобразуют энергию в ультракороткие импульсы на 30% лучше.
🔘Стабильность импульсов. Шумы в излучении уменьшились на 25–40%, что позволило получить более четкие и точные изображения.
🔘Долговечность. Пленки не теряли своих свойств даже после многократного использования.

Новый метод поможет улучшить качество волоконных лазеров и расширить их применение в науке, промышленности и медицине, где необходимы высокая точность рабочих параметров, надежность эксплуатации и стабильность основных характеристик излучения.

Результаты исследования опубликованы в журнале Carbon

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM