📹 Загрузчик видео с YouTube и других платформ
tuitube — это текстовый интерфейс для загрузки видео с YouTube, 𝕏, Twitch, Instagram и Bilibili с использованием yt-dlp. Удобный инструмент для тех, кто предпочитает командную строку.
🚀 Основные моменты:
- Поддержка множества видео платформ
- Использует yt-dlp для загрузки
- Простой текстовый интерфейс
- Легко настраивается и использует командную строку
📌 GitHub: https://github.com/remorses/tuitube
#python
@Python_Community_ru
tuitube — это текстовый интерфейс для загрузки видео с YouTube, 𝕏, Twitch, Instagram и Bilibili с использованием yt-dlp. Удобный инструмент для тех, кто предпочитает командную строку.
🚀 Основные моменты:
- Поддержка множества видео платформ
- Использует yt-dlp для загрузки
- Простой текстовый интерфейс
- Легко настраивается и использует командную строку
📌 GitHub: https://github.com/remorses/tuitube
#python
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 БЫСТРЫЙ СЕРВЕР ДЛЯ PYTHON ЗА 5 МИНУТ
Нужно быстро поднять сервер под Python-проект без лишней возни?
Ставим системные пакеты, создаём отдельного пользователя, настраиваем venv, делаем systemd-сервис и сразу получаем автозапуск + рестарт при падении.
Идеально для FastAPI / Flask / любых API и ботов.
sudo apt update && sudo apt install -y python3-venv python3-pip nginx
sudo useradd -m -s /bin/bash app && sudo mkdir -p /opt/app && sudo chown -R app:app /opt/app
sudo -u app bash -lc 'cd /opt/app && python3 -m venv venv && ./venv/bin/pip install -U pip uvicorn fastapi'
sudo tee /etc/systemd/system/app.service >/dev/null
@Python_Community_ru
Нужно быстро поднять сервер под Python-проект без лишней возни?
Ставим системные пакеты, создаём отдельного пользователя, настраиваем venv, делаем systemd-сервис и сразу получаем автозапуск + рестарт при падении.
Идеально для FastAPI / Flask / любых API и ботов.
sudo apt update && sudo apt install -y python3-venv python3-pip nginx
sudo useradd -m -s /bin/bash app && sudo mkdir -p /opt/app && sudo chown -R app:app /opt/app
sudo -u app bash -lc 'cd /opt/app && python3 -m venv venv && ./venv/bin/pip install -U pip uvicorn fastapi'
sudo tee /etc/systemd/system/app.service >/dev/null
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 PYTHON СТАРТЕР ДЛЯ ЛЮБОГО ПРОЕКТА
Сохраняй себе это - и используй каждый раз, когда начинаешь новый Python-проект.
Перед тем как писать код, сделай 5 вещей:
- создай правильную структуру проекта
- подними виртуальное окружение
- закрепи зависимости (requirements/poetry)
- добавь линтер и форматтер, чтобы код сразу был норм
- вынеси секреты в .env, а не в код
Это экономит часы на дебаге и делает проект “взрослым” с первой минуты.
1) создать папку проекта
mkdir my_project && cd my_project
2) виртуальное окружение
python -m venv .venv
source .venv/bin/activate
3) базовые файлы
touch main.py requirements.txt .env .gitignore
4) gitignore + env
echo ".venv/
__pycache__/
.env
*.pyc" > .gitignore
# 5) полезный стартовый набор
pip install -U pip
pip install ruff black python-dotenv
https://www.youtube.com/shorts/lnKQ_2UjOfw
@Python_Community_ru
Сохраняй себе это - и используй каждый раз, когда начинаешь новый Python-проект.
Перед тем как писать код, сделай 5 вещей:
- создай правильную структуру проекта
- подними виртуальное окружение
- закрепи зависимости (requirements/poetry)
- добавь линтер и форматтер, чтобы код сразу был норм
- вынеси секреты в .env, а не в код
Это экономит часы на дебаге и делает проект “взрослым” с первой минуты.
1) создать папку проекта
mkdir my_project && cd my_project
2) виртуальное окружение
python -m venv .venv
source .venv/bin/activate
3) базовые файлы
touch main.py requirements.txt .env .gitignore
4) gitignore + env
echo ".venv/
__pycache__/
.env
*.pyc" > .gitignore
# 5) полезный стартовый набор
pip install -U pip
pip install ruff black python-dotenv
https://www.youtube.com/shorts/lnKQ_2UjOfw
@Python_Community_ru
⚡️ Все шпаргалки для программистов в одном месте.
Внутри много полезного: короткие, понятные подсказки по языкам, технологиям и фреймворкам.
Без регистрации и бесплатно.
https://overapi.com/
@Python_Community_ru
Внутри много полезного: короткие, понятные подсказки по языкам, технологиям и фреймворкам.
Без регистрации и бесплатно.
https://overapi.com/
@Python_Community_ru
💼 ru-test-assignments - большая база реальных тестовых заданий от IT-компаний
ru-test-assignments - это открытая коллекция настоящих тестовых заданий, которые кандидаты получали на собеседованиях в российских IT-компаниях.
Без абстрактных задач «в вакууме» только то, что реально спрашивают.
Что внутри 👇
• Сотни заданий по направлениям:
Frontend, Backend, QA, Android, iOS, Data Science, DevOps
• Компании из топа рынка:
Avito, Яндекс, Тинькофф, Сбер, Ozon, VK и другие
• Разные языки и стеки:
Python, JavaScript, Go, Java, PHP, Ruby, C#
• Готовые задания можно прикреплять в портфолио (например, через Hexlet CV)
Почему это полезно:
- понимаешь реальные требования рынка
- тренируешься на задачах уровня интервью
- закрываешь пробелы в стеке
- усиливаешь портфолио без выдуманных кейсов
Отличный ресурс для подготовки к собеседованиям и оценки своего уровня.
https://github.com/Hexlet/ru-test-assignments
@Python_Community_ru
ru-test-assignments - это открытая коллекция настоящих тестовых заданий, которые кандидаты получали на собеседованиях в российских IT-компаниях.
Без абстрактных задач «в вакууме» только то, что реально спрашивают.
Что внутри 👇
• Сотни заданий по направлениям:
Frontend, Backend, QA, Android, iOS, Data Science, DevOps
• Компании из топа рынка:
Avito, Яндекс, Тинькофф, Сбер, Ozon, VK и другие
• Разные языки и стеки:
Python, JavaScript, Go, Java, PHP, Ruby, C#
• Готовые задания можно прикреплять в портфолио (например, через Hexlet CV)
Почему это полезно:
- понимаешь реальные требования рынка
- тренируешься на задачах уровня интервью
- закрываешь пробелы в стеке
- усиливаешь портфолио без выдуманных кейсов
Отличный ресурс для подготовки к собеседованиям и оценки своего уровня.
https://github.com/Hexlet/ru-test-assignments
@Python_Community_ru
🧭 LLMRouter - умная маршрутизация запросов между LLM
UIUC (ULab) выложили LLMRouter - проект про то, что скоро станет стандартом в AI-продуктах:
не выбирать “одну лучшую модель”,
а маршрутизировать запросы между несколькими LLM так, чтобы было:
- дешевле
- быстрее
- точнее
Идея простая:
разные модели сильны в разном.
Одна лучше пишет код, другая - рассуждает, третья - дешёвая для рутины.
Но большинство продуктов до сих пор делают тупо:
“все запросы → одна LLM”.
LLMRouter делает наоборот:
- анализирует входной запрос
- оценивает сложность / тип задачи
- выбирает подходящую модель
- может учитывать цену, latency, качество, политики
В итоге:
✅ обычные вопросы идут в дешёвую модель
✅ сложные reasoning-задачи - в сильную
✅ код/инструменты - в специализированную
✅ и всё это автоматически
Почему это важно:
как только у тебя 3-5 моделей (OpenAI/Anthropic/Gemini/open-source),
маршрутизация превращается в экономию десятков тысяч долларов в месяц.
Короче: это “load balancer” для LLM, но с мозгами.
GitHub: https://github.com/ulab-uiuc/LLMRouter
#LLM #AI #Routing #Agents #MLOps
@Python_Community_ru
UIUC (ULab) выложили LLMRouter - проект про то, что скоро станет стандартом в AI-продуктах:
не выбирать “одну лучшую модель”,
а маршрутизировать запросы между несколькими LLM так, чтобы было:
- дешевле
- быстрее
- точнее
Идея простая:
разные модели сильны в разном.
Одна лучше пишет код, другая - рассуждает, третья - дешёвая для рутины.
Но большинство продуктов до сих пор делают тупо:
“все запросы → одна LLM”.
LLMRouter делает наоборот:
- анализирует входной запрос
- оценивает сложность / тип задачи
- выбирает подходящую модель
- может учитывать цену, latency, качество, политики
В итоге:
✅ обычные вопросы идут в дешёвую модель
✅ сложные reasoning-задачи - в сильную
✅ код/инструменты - в специализированную
✅ и всё это автоматически
Почему это важно:
как только у тебя 3-5 моделей (OpenAI/Anthropic/Gemini/open-source),
маршрутизация превращается в экономию десятков тысяч долларов в месяц.
Короче: это “load balancer” для LLM, но с мозгами.
GitHub: https://github.com/ulab-uiuc/LLMRouter
#LLM #AI #Routing #Agents #MLOps
@Python_Community_ru
🔥1
🐸 Microsoft зарелизили FrogMini - модель для дебага и исправления багов.
Что важно:
- Базируется на Qwen3-14B
- Показала SOTA на SWE-Bench Verified: Pass@1 = 45.0% 🔥
Как обучали:
- Использовали SFT (supervised fine-tuning)
- Данные - успешные debugging trajectories (пошаговые цепочки исправлений)
- Эти траектории сгенерированы сильной teacher-моделью (например, **Claude**)
- Источники багов - микс реальных и синтетических датасетов
Идея простая, но мощная:
учим модель не просто писать код, а думать как дебаггер - шаг за шагом.
📌 Теперь Qwen3-14B + правильные траектории = реальный tool для SWE задач.
https://huggingface.co/microsoft/FrogMini-14B-2510
@Python_Community_ru
Что важно:
- Базируется на Qwen3-14B
- Показала SOTA на SWE-Bench Verified: Pass@1 = 45.0% 🔥
Как обучали:
- Использовали SFT (supervised fine-tuning)
- Данные - успешные debugging trajectories (пошаговые цепочки исправлений)
- Эти траектории сгенерированы сильной teacher-моделью (например, **Claude**)
- Источники багов - микс реальных и синтетических датасетов
Идея простая, но мощная:
учим модель не просто писать код, а думать как дебаггер - шаг за шагом.
📌 Теперь Qwen3-14B + правильные траектории = реальный tool для SWE задач.
https://huggingface.co/microsoft/FrogMini-14B-2510
@Python_Community_ru