This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Microsoft выпустила Visual Studio 2026 - крупнейшее обновление IDE за последние годы.
🔹 300+ новых функций и почти 5000 исправлений ошибок
🔹 Интеграция с GitHub Copilot стала глубже: теперь он помогает в анализе, рефакторинге и генерации кода
🔹 Редизайн интерфейса — 11 новых цветовых тем, улучшенная навигация и читаемость
🔹 Производительность выросла: количество зависаний интерфейса снизилось на 50 %
🔹 Более 4000 расширений от Visual Studio 2022 полностью совместимы с новой версией
Самое время обновиться - новая версия ощутимо быстрее и умнее.
https://visualstudio.microsoft.com/downloads/
@csharp_ci
@Python_Community_ru
🔹 300+ новых функций и почти 5000 исправлений ошибок
🔹 Интеграция с GitHub Copilot стала глубже: теперь он помогает в анализе, рефакторинге и генерации кода
🔹 Редизайн интерфейса — 11 новых цветовых тем, улучшенная навигация и читаемость
🔹 Производительность выросла: количество зависаний интерфейса снизилось на 50 %
🔹 Более 4000 расширений от Visual Studio 2022 полностью совместимы с новой версией
Самое время обновиться - новая версия ощутимо быстрее и умнее.
https://visualstudio.microsoft.com/downloads/
@csharp_ci
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🖥СОВЕТ ДЛЯ PYTHON ASYNCIO
В продвинутых asyncio-сетях главная редкая проблема — неконтролируемый рост буфера, когда клиент принимает данные слишком медленно. Python по умолчанию спокойно складывает мегабайты в память, пока сокет забит.
Решение - вручную ограничить размер буфера транспорта через `set write buffer limits и всегда ждать writer.drain. Тогда при медленном клиенте корутины просто «замрут» в drain(), а не раздуют памяиь.
Подписывайся, больше фишек каждый день !
пример контролируемой по памяти передачи данных
import asyncio
async def handle(reader, writer):
writer.transport.set_write_buffer_limits(high=500_000, low=200_000)
while True:
writer.write(b"x" * 65536)
await writer.drain() # остановит корутину, если клиент не успевает
async def main():
server = await asyncio.start_server(handle, "0.0.0.0", 8888)
async with server:
await server.serve_forever()
asyncio.run(main())
@Python_Community_ru
В продвинутых asyncio-сетях главная редкая проблема — неконтролируемый рост буфера, когда клиент принимает данные слишком медленно. Python по умолчанию спокойно складывает мегабайты в память, пока сокет забит.
Решение - вручную ограничить размер буфера транспорта через `set write buffer limits и всегда ждать writer.drain. Тогда при медленном клиенте корутины просто «замрут» в drain(), а не раздуют памяиь.
Подписывайся, больше фишек каждый день !
пример контролируемой по памяти передачи данных
import asyncio
async def handle(reader, writer):
writer.transport.set_write_buffer_limits(high=500_000, low=200_000)
while True:
writer.write(b"x" * 65536)
await writer.drain() # остановит корутину, если клиент не успевает
async def main():
server = await asyncio.start_server(handle, "0.0.0.0", 8888)
async with server:
await server.serve_forever()
asyncio.run(main())
@Python_Community_ru
Кризис в диджитал
Все говорят о кризисе: бюджеты режут, рынок сжимается, конкуренция растёт. В digital это ощущается сильнее всего – давление на эффективность и сроки стало нормой. Но паника ничего не меняет.
Мы видим ситуацию иначе. Когда рынок штормит, выигрывают не те, у кого больше ресурсов, а те, кто умеет быстро перестраиваться, усиливать процессы и работать точнее.
Мы знаем, как проходить спад: что оптимизировать, что автоматизировать, какие метрики реально важны, что помогает удерживать клиентов, а что – только создаёт иллюзию контроля.
В итоге несколько авторов digital-каналов решили объединиться и собрать всё полезное в одну папку — «Документы для тех, кто в digital»
🔴 Там 30 файлов, которые помогают выстроить управление, аналитику и внутренние процессы:
– Мотивация сотрудников в IT,
– Контроль сроков диджитал-проекта,
– Шаблон CSI,
– Фреймворк для проведения исследований через ИИ,
– Как создать продающее КП.
📂 Ссылка на папку: https://t.iss.one/addlist/mUVeZHwtrzc0NWYy
А чтобы добавить немного азарта — среди подписавшихся разыграют:
🥇 iPhone Air;
🥈 Яндекс Станцию Лайт 2;
🥉 HUAWEI Freebuds 5.
Как участвовать:
1. Подпишись на папку: https://t.iss.one/addlist/mUVeZHwtrzc0NWYy
2. Подтверди участие в боте
🗓 Итоги — 25 ноября.
Все говорят о кризисе: бюджеты режут, рынок сжимается, конкуренция растёт. В digital это ощущается сильнее всего – давление на эффективность и сроки стало нормой. Но паника ничего не меняет.
Мы видим ситуацию иначе. Когда рынок штормит, выигрывают не те, у кого больше ресурсов, а те, кто умеет быстро перестраиваться, усиливать процессы и работать точнее.
Мы знаем, как проходить спад: что оптимизировать, что автоматизировать, какие метрики реально важны, что помогает удерживать клиентов, а что – только создаёт иллюзию контроля.
В итоге несколько авторов digital-каналов решили объединиться и собрать всё полезное в одну папку — «Документы для тех, кто в digital»
– Мотивация сотрудников в IT,
– Контроль сроков диджитал-проекта,
– Шаблон CSI,
– Фреймворк для проведения исследований через ИИ,
– Как создать продающее КП.
📂 Ссылка на папку: https://t.iss.one/addlist/mUVeZHwtrzc0NWYy
А чтобы добавить немного азарта — среди подписавшихся разыграют:
🥇 iPhone Air;
🥈 Яндекс Станцию Лайт 2;
🥉 HUAWEI Freebuds 5.
Как участвовать:
1. Подпишись на папку: https://t.iss.one/addlist/mUVeZHwtrzc0NWYy
2. Подтверди участие в боте
🗓 Итоги — 25 ноября.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1🔥1
💡 Qwen-Image-Edit получил полезное обновление.
Лаборатория eigen ai labs выпустила новую LoRA под названием Eigen-Banana. Она ориентирована на быстрые и точные правки изображений по текстовым подсказкам. Работает на высоких скоростях и хорошо понимает как английские, так и китайские запросы.
Важно: лицензия разрешает только некоммерческое использование.
Ссылка: https://huggingface.co/eigen-ai-labs/eigen-banana-qwen-image-edit
@Python_Community_ru
Лаборатория eigen ai labs выпустила новую LoRA под названием Eigen-Banana. Она ориентирована на быстрые и точные правки изображений по текстовым подсказкам. Работает на высоких скоростях и хорошо понимает как английские, так и китайские запросы.
Важно: лицензия разрешает только некоммерческое использование.
Ссылка: https://huggingface.co/eigen-ai-labs/eigen-banana-qwen-image-edit
@Python_Community_ru
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ ПРИЁМ ДЛЯ ГЛАДКОЙ ПЕРЕДАЧИ ДАННЫХ В ASYNCIO
В сетевом Python можно «мягко» ограничивать скорость передачи данных без троттлинга на уровне сокета.
Приём - отправлять данные кусками и вставлять короткий await asyncio sleep после каждого drain(): это отдаёт управление циклу, даёт шанс другим корутинам и предотвращает монополизацию CPU.
Полезно в высоконагруженных стримерах.
простой «мягкий» троттлинг передачи данных
import asyncio
CHUNK = 32_000
async def send_smooth(writer, data: bytes):
for i in range(0, len(data), CHUNK):
writer.write(data[i:i+CHUNK])
await writer.drain()
await asyncio.sleep(0) # отдаём управление циклу
async def handle(reader, writer):
payload = b"x" * 5_000_000
await send_smooth(writer, payload)
writer.close()
await writer.wait_closed()
async def main():
srv = await asyncio.start_server(handle, "0.0.0.0", 8888)
async with srv:
await srv.serve_forever()
asyncio.run(main())
@Python_Community_ru
В сетевом Python можно «мягко» ограничивать скорость передачи данных без троттлинга на уровне сокета.
Приём - отправлять данные кусками и вставлять короткий await asyncio sleep после каждого drain(): это отдаёт управление циклу, даёт шанс другим корутинам и предотвращает монополизацию CPU.
Полезно в высоконагруженных стримерах.
простой «мягкий» троттлинг передачи данных
import asyncio
CHUNK = 32_000
async def send_smooth(writer, data: bytes):
for i in range(0, len(data), CHUNK):
writer.write(data[i:i+CHUNK])
await writer.drain()
await asyncio.sleep(0) # отдаём управление циклу
async def handle(reader, writer):
payload = b"x" * 5_000_000
await send_smooth(writer, payload)
writer.close()
await writer.wait_closed()
async def main():
srv = await asyncio.start_server(handle, "0.0.0.0", 8888)
async with srv:
await srv.serve_forever()
asyncio.run(main())
@Python_Community_ru
👍1
⚡ Microsoft выкатили **amplifier** - новую экспериментальную платформу для сборки AI-инструментов без лишнего кода.
Что это:
- способ описать экспертный процесс в виде шагов и автоматически превратить его в работающий инструмент;
- возможность комбинировать такие инструменты между собой, создавая цепочки автоматизации;
- платформа для исследований, поэтому всё ещё активно меняется.
Чем хорош инструмент:
- позволяет быстро превращать повторяющиеся задачи в автономные AI-процессы;
- помогает строить «агентов» с ролями — исследователь, критик, исполнитель;
- снижает порог входа: достаточно описать логику, а не писать всю реализацию.
Это пока исследовательский проект, но потенциал — большой.
👉 Репозиторий: https://github.com/microsoft/amplifier
@Python_Community_ru
Что это:
- способ описать экспертный процесс в виде шагов и автоматически превратить его в работающий инструмент;
- возможность комбинировать такие инструменты между собой, создавая цепочки автоматизации;
- платформа для исследований, поэтому всё ещё активно меняется.
Чем хорош инструмент:
- позволяет быстро превращать повторяющиеся задачи в автономные AI-процессы;
- помогает строить «агентов» с ролями — исследователь, критик, исполнитель;
- снижает порог входа: достаточно описать логику, а не писать всю реализацию.
Это пока исследовательский проект, но потенциал — большой.
👉 Репозиторий: https://github.com/microsoft/amplifier
@Python_Community_ru
🔥2👍1
🧩 Удобная библиотека для логирования с контекстом
Unilogging упрощает процесс логирования в Python-приложениях, используя Dependency Injection для управления контекстом логов. Это позволяет легко отслеживать события, связанные с конкретными запросами, без необходимости передавать данные через все уровни приложения.
🚀Основные моменты:
- Логирование с использованием контекста для упрощения отслеживания запросов.
- Поддержка Dependency Injection для гибкости и удобства.
- Минимизация дублирования кода при передаче данных логирования.
- Интеграция с FastAPI и другими фреймворками.
📌 GitHub: https://github.com/goduni/unilogging
@Python_Community_ru
Unilogging упрощает процесс логирования в Python-приложениях, используя Dependency Injection для управления контекстом логов. Это позволяет легко отслеживать события, связанные с конкретными запросами, без необходимости передавать данные через все уровни приложения.
🚀Основные моменты:
- Логирование с использованием контекста для упрощения отслеживания запросов.
- Поддержка Dependency Injection для гибкости и удобства.
- Минимизация дублирования кода при передаче данных логирования.
- Интеграция с FastAPI и другими фреймворками.
📌 GitHub: https://github.com/goduni/unilogging
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Хитрый трюк по работе со статикой
Если заранее посчитать ETag для статических файлов, сервер сможет мгновенно отвечать 304 Not Modified без чтения с диска. Это резко ускоряет отдачу статики на Python.
import os, hashlib
from http.server import SimpleHTTPRequestHandler, HTTPServer
STATIC = "static"
etag = {f: hashlib.md5(open(os.path.join(STATIC, f),"rb").read()).hexdigest()
for f in os.listdir(STATIC)}
class H(SimpleHTTPRequestHandler):
def end_headers(self):
name = self.path.lstrip("/")
if name in etag:
self.send_header("ETag", etag[name])
super().end_headers()
HTTPServer(("0.0.0.0", 8000), H).serve_forever()
@Python_Community_ru
Если заранее посчитать ETag для статических файлов, сервер сможет мгновенно отвечать 304 Not Modified без чтения с диска. Это резко ускоряет отдачу статики на Python.
import os, hashlib
from http.server import SimpleHTTPRequestHandler, HTTPServer
STATIC = "static"
etag = {f: hashlib.md5(open(os.path.join(STATIC, f),"rb").read()).hexdigest()
for f in os.listdir(STATIC)}
class H(SimpleHTTPRequestHandler):
def end_headers(self):
name = self.path.lstrip("/")
if name in etag:
self.send_header("ETag", etag[name])
super().end_headers()
HTTPServer(("0.0.0.0", 8000), H).serve_forever()
@Python_Community_ru
👍3
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Очистка python кода!
Чтобы сильно упростить очистку Python-кода, вынеси мелкие предикаты, фильтры и маппинги в именованные функции. Это делает пайплайны короче, уменьшает вложенность и ускоряет отладку. Такой приём особенно полезен, когда список операций растёт и становится нечитаемым. Подписывайся, больше фишек каждый день !
def is_valid(user):
return user.get("active") and user.get("role") != "banned"
def normalize(user):
user["name"] = user["name"].strip().title()
return user
def enrich(user):
user["score"] = user.get("score", 0) + 10
return user
users = [... ] # внешний источник
cleaned = [enrich(normalize(u)) for u in users if is_valid(u)]
print(cleaned)
@Python_Community_ru
Чтобы сильно упростить очистку Python-кода, вынеси мелкие предикаты, фильтры и маппинги в именованные функции. Это делает пайплайны короче, уменьшает вложенность и ускоряет отладку. Такой приём особенно полезен, когда список операций растёт и становится нечитаемым. Подписывайся, больше фишек каждый день !
def is_valid(user):
return user.get("active") and user.get("role") != "banned"
def normalize(user):
user["name"] = user["name"].strip().title()
return user
def enrich(user):
user["score"] = user.get("score", 0) + 10
return user
users = [... ] # внешний источник
cleaned = [enrich(normalize(u)) for u in users if is_valid(u)]
print(cleaned)
@Python_Community_ru
👍3
✔️ CPython может получить обязательную зависимость от Rust к версии Python 3.17.
Эмма Смит и Кирилл Подопригора из core-team Python опубликовали предварительное предложение (Pre-PEP), в котором описывается план постепенного внедрения Rust в кодовую базу CPython.
На первом этапе Rust хотят использовать для необязательных модулей стандартной библиотеки, находящихся в каталоге Modules/.
Дальше — больше: если эксперимент окажется успешным, то к выходу Python 3.17 Rust может стать обязательной сборочной зависимостью. Это позволит улучшить безопасность, производительность и надёжность низкоуровневых частей интерпретатора.
Подробнее: https://peps.python.org/pep-0011/
@Python_Community_ru
Эмма Смит и Кирилл Подопригора из core-team Python опубликовали предварительное предложение (Pre-PEP), в котором описывается план постепенного внедрения Rust в кодовую базу CPython.
На первом этапе Rust хотят использовать для необязательных модулей стандартной библиотеки, находящихся в каталоге Modules/.
Дальше — больше: если эксперимент окажется успешным, то к выходу Python 3.17 Rust может стать обязательной сборочной зависимостью. Это позволит улучшить безопасность, производительность и надёжность низкоуровневых частей интерпретатора.
Подробнее: https://peps.python.org/pep-0011/
@Python_Community_ru
👍2
🚀 django-keel - мощный стартовый шаблон для Django-проектов
💡 Что это такое
Готовый современный каркас для Django-приложений, который позволяет запускать новый проект за минуты — с правильной архитектурой, CI, Docker и продуманной конфигурацией.
🔥 Что внутри
- Поддержка Python 3.12+ и Django 5.2+
- Несколько видов проектов: SaaS, API-backend, web-app, internal tools
- Docker + Docker Compose
- Настроенные линтеры, тесты, coverage и GitHub Actions
- 12-factor конфигурация, разделённые settings (dev/test/prod)
- Варианты API: DRF или GraphQL
- Поддержка фронта: Next.js или HTMX + Tailwind
🎯 Почему стоит использовать
- Экономит недели рутинной настройки
- Даёт единообразную и поддерживаемую архитектуру
- Ускоряет разработку MVP, внутренних сервисов и SaaS-продуктов
🛠 Быстрый старт
copier copy gh:CuriousLearner/django-keel my-project
Репозиторий: https://github.com/CuriousLearner/django-keel
@Python_Community_ru
💡 Что это такое
Готовый современный каркас для Django-приложений, который позволяет запускать новый проект за минуты — с правильной архитектурой, CI, Docker и продуманной конфигурацией.
🔥 Что внутри
- Поддержка Python 3.12+ и Django 5.2+
- Несколько видов проектов: SaaS, API-backend, web-app, internal tools
- Docker + Docker Compose
- Настроенные линтеры, тесты, coverage и GitHub Actions
- 12-factor конфигурация, разделённые settings (dev/test/prod)
- Варианты API: DRF или GraphQL
- Поддержка фронта: Next.js или HTMX + Tailwind
🎯 Почему стоит использовать
- Экономит недели рутинной настройки
- Даёт единообразную и поддерживаемую архитектуру
- Ускоряет разработку MVP, внутренних сервисов и SaaS-продуктов
🛠 Быстрый старт
copier copy gh:CuriousLearner/django-keel my-project
Репозиторий: https://github.com/CuriousLearner/django-keel
@Python_Community_ru
🔥3
🚀 GigaChat Ultra & Lightning — новые MoE-модели от Сбера
💡 Что это такое
Две открытые (https://ria.ru/20251120/sber-2056388219.html) модели нового поколения, обученные с нуля — без чужих весов. Созданы, чтобы ускорять разработку, уменьшать рутину и быть удобным напарником для разработчиков.
🔥 Что внутри
- Ultra: 702B параметров, контекст до 131k, стабильная работа экспертов
- Lightning: 10B параметров, контекст до 256k, лёгкая и быстрая
- Генерация нескольких токенов одновременно
- Экономия памяти, оптимизация KV-кеша
- Совместимость с Hugging Face, vLLM и SGLang
🎯 Почему стоит использовать
- Сбер снимает часть технических забот, чтобы сосредоточиться на экспериментах
- Ускоряет локальное прототипирование и работу с AI-помощниками
- Подходит для масштабных решений и небольших проектов
@Python_Community_ru
💡 Что это такое
Две открытые (https://ria.ru/20251120/sber-2056388219.html) модели нового поколения, обученные с нуля — без чужих весов. Созданы, чтобы ускорять разработку, уменьшать рутину и быть удобным напарником для разработчиков.
🔥 Что внутри
- Ultra: 702B параметров, контекст до 131k, стабильная работа экспертов
- Lightning: 10B параметров, контекст до 256k, лёгкая и быстрая
- Генерация нескольких токенов одновременно
- Экономия памяти, оптимизация KV-кеша
- Совместимость с Hugging Face, vLLM и SGLang
🎯 Почему стоит использовать
- Сбер снимает часть технических забот, чтобы сосредоточиться на экспериментах
- Ускоряет локальное прототипирование и работу с AI-помощниками
- Подходит для масштабных решений и небольших проектов
@Python_Community_ru
👍1
🚀 myfy - модульный Python-фреймворк с фронтендом «из коробки»
Зачем он нужен: FastAPI - идеален для API, но без нормального фронта.
myfy берёт лучшее из FastAPI и добавляет полноценную модульность, DI и встроенный UI.
🔥 Главное
- Модульная архитектура с жизненным циклом (`start/stop`)
- Type-based DI без скрытой магии
- Фронтенд сразу из коробки:
Jinja2 + DaisyUI + Tailwind + Vite + HMR
Можно делать UI без React/Vue, идеально для внутренних тулов
- Чистая структура проекта, минимум бойлерплейта
🚀 Быстрый старт
pip install myfy
myfy init
myfy frontend init
myfy run
https://github.com/psincraian/myfy
@Python_Community_ru
Зачем он нужен: FastAPI - идеален для API, но без нормального фронта.
myfy берёт лучшее из FastAPI и добавляет полноценную модульность, DI и встроенный UI.
🔥 Главное
- Модульная архитектура с жизненным циклом (`start/stop`)
- Type-based DI без скрытой магии
- Фронтенд сразу из коробки:
Jinja2 + DaisyUI + Tailwind + Vite + HMR
Можно делать UI без React/Vue, идеально для внутренних тулов
- Чистая структура проекта, минимум бойлерплейта
🚀 Быстрый старт
pip install myfy
myfy init
myfy frontend init
myfy run
https://github.com/psincraian/myfy
@Python_Community_ru
🔥2
🔥 10 однострочных Python-функций, которые экономят время каждый день
Держи небольшой набор из 10 функций-однострочников, которые полезно просто закинуть в свой utils.py.
Они помогают быстро работать со списками, файлами, JSON, статистикой и частотами, без лишнего шума в коде.
Скопируй блок целиком и используй нужные функции по месту.
from pathlib import Path
from collections import Counter
import json, statistics as stats
chunks = lambda it, n: [it[i:i + n] for i in range(0, len(it), n)]
flatten = lambda lst: [x for sub in lst for x in sub]
unique = lambda seq: list(dict.fromkeys(seq))
sliding = lambda it, n: [it[i:i + n] for i in range(len(it) - n + 1)]
freqs = lambda seq: Counter(seq)
read_text = lambda p: Path(p).read_text(encoding="utf-8")
write_text = lambda p, text: Path(p).write_text(text, encoding="utf-8")
read_json = lambda p: json.loads(Path(p).read_text(encoding="utf-8"))
write_json = lambda p, obj: Path(p).write_text(json.dumps(obj, ensure_ascii=False, indent=2), encoding="utf-8")
mean_std = lambda xs: (stats.mean(xs), stats.pstdev(xs))
@Python_Community_ru
Держи небольшой набор из 10 функций-однострочников, которые полезно просто закинуть в свой utils.py.
Они помогают быстро работать со списками, файлами, JSON, статистикой и частотами, без лишнего шума в коде.
Скопируй блок целиком и используй нужные функции по месту.
from pathlib import Path
from collections import Counter
import json, statistics as stats
chunks = lambda it, n: [it[i:i + n] for i in range(0, len(it), n)]
flatten = lambda lst: [x for sub in lst for x in sub]
unique = lambda seq: list(dict.fromkeys(seq))
sliding = lambda it, n: [it[i:i + n] for i in range(len(it) - n + 1)]
freqs = lambda seq: Counter(seq)
read_text = lambda p: Path(p).read_text(encoding="utf-8")
write_text = lambda p, text: Path(p).write_text(text, encoding="utf-8")
read_json = lambda p: json.loads(Path(p).read_text(encoding="utf-8"))
write_json = lambda p, obj: Path(p).write_text(json.dumps(obj, ensure_ascii=False, indent=2), encoding="utf-8")
mean_std = lambda xs: (stats.mean(xs), stats.pstdev(xs))
@Python_Community_ru
🔥1
🧵 CPython 3.15 делает распаковку данных намного быстрее
В новой версии CPython улучшили производительность декомпрессии:
- Zstandard (zstd) распаковывается на 25–30% быстрее
- zlib — на 10–15% быстрее, если размер данных больше 1 MiB
Такого ускорения добились за счёт более эффективной работы с выходными буферами во время распаковки.
Подробнее: emmatyping.dev/decompression-is-up-to-30-faster-in-cpython-315.html
@Python_Community_ru
В новой версии CPython улучшили производительность декомпрессии:
- Zstandard (zstd) распаковывается на 25–30% быстрее
- zlib — на 10–15% быстрее, если размер данных больше 1 MiB
Такого ускорения добились за счёт более эффективной работы с выходными буферами во время распаковки.
Подробнее: emmatyping.dev/decompression-is-up-to-30-faster-in-cpython-315.html
@Python_Community_ru
🔥3
Cursor мощно прокачался — релизнулась версия 2.1, которая еще быстрее находит баги, делает ревью кода, пишет и оптимизирует программы.
• Разрабы внедрили кнопку «Find issues» — агент автоматически правит баги, делает ревью и подсвечивает проблемы в боковой панели. Да, все СРАЗУ и без нескольких промптов.
• Поиск ускорили в разы — теперь он работает на базе векторов и шерстит даже массивную кодовую базу за секунды.
• Улучшили режим планирования — агент будет задавать еще больше уточняющих вопросов, когда ты утверждаете задачу. Отвечать нужно в интерактивном режиме.
И да, сейчас на Cursor Pro есть скидка — реально приятная. Вместо 22 тысяч — 7000 рублей!
Так что если думали — это тот самый момент «пока недорого».
Купить можно на сайте 👉 по ссылке (https://cursorpro.ru/?utm_source=tg&utm_medium=post&utm_campaign=pr1)
Или можно купить на авито напрямую у продавца по ссылке (https://cursorpro.ru/avito?utm_source=tg&utm_medium=post&utm_campaign=pr1)
@Python_Community_ru
• Разрабы внедрили кнопку «Find issues» — агент автоматически правит баги, делает ревью и подсвечивает проблемы в боковой панели. Да, все СРАЗУ и без нескольких промптов.
• Поиск ускорили в разы — теперь он работает на базе векторов и шерстит даже массивную кодовую базу за секунды.
• Улучшили режим планирования — агент будет задавать еще больше уточняющих вопросов, когда ты утверждаете задачу. Отвечать нужно в интерактивном режиме.
И да, сейчас на Cursor Pro есть скидка — реально приятная. Вместо 22 тысяч — 7000 рублей!
Так что если думали — это тот самый момент «пока недорого».
Купить можно на сайте 👉 по ссылке (https://cursorpro.ru/?utm_source=tg&utm_medium=post&utm_campaign=pr1)
Или можно купить на авито напрямую у продавца по ссылке (https://cursorpro.ru/avito?utm_source=tg&utm_medium=post&utm_campaign=pr1)
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Коварная ловушка с замыканиями в Python
Многие хитрые баги в Python появляются из-за того, что разработчики неверно понимают область видимости переменных в замыканиях.
Частая ошибка - внутри цикла создавать функции-лямбды, которые «помнят» одно и то же финальное значение переменной, а не значение на каждой итерации. В итоге весь список функций ведёт себя одинаково. Чтобы избежать ловушки, фиксируйте значение через аргумент по умолчанию или используйте functools.partial.
funcs = []
for i in range(5):
funcs.append(lambda x=i: x) # фиксируем i как значение по умолчанию
print([f() for f in funcs]) # [0, 1, 2, 3, 4]
@Python_Community_ru
Многие хитрые баги в Python появляются из-за того, что разработчики неверно понимают область видимости переменных в замыканиях.
Частая ошибка - внутри цикла создавать функции-лямбды, которые «помнят» одно и то же финальное значение переменной, а не значение на каждой итерации. В итоге весь список функций ведёт себя одинаково. Чтобы избежать ловушки, фиксируйте значение через аргумент по умолчанию или используйте functools.partial.
funcs = []
for i in range(5):
funcs.append(lambda x=i: x) # фиксируем i как значение по умолчанию
print([f() for f in funcs]) # [0, 1, 2, 3, 4]
@Python_Community_ru
👍1