Python Community
12.3K subscribers
1.36K photos
86 videos
15 files
874 links
Python Community RU - СНГ сообщество Python-разработчиков

Чат канала: @python_community_chat

Сотрудничество: @cyberJohnny и @Sergey_bzd

РКН реестр:
https://knd.gov.ru/license?id=67847dd98e552d6b54a511ed&registryType=bloggersPermission
Download Telegram
🎤 Инновационная система распознавания речи Fun-ASR

Fun-ASR — мощная модель распознавания речи, обученная на миллионах часов аудиоданных. Она поддерживает 31 язык и обеспечивает высокую точность в сложных условиях, таких как шумные помещения. Модель адаптирована для профессиональных терминов в таких областях, как образование и финансы.

🚀 Основные моменты:
- Высокая точность распознавания до 93% в шумных условиях.
- Поддержка 31 языка с акцентом на восточноазиатские языки.
- Оптимизация для распознавания диалектов и региональных акцентов.
- Способность распознавать текст песен на фоне музыки.

📌 GitHub: https://github.com/FunAudioLLM/Fun-ASR



#python

@Python_Community_ru
👍1
📄🚀 Qwen-Doc: Открытые проекты по пониманию документов

Qwen-Doc — это репозиторий, посвященный ИИ для работы с документами, разработанный командой Tongyi-Zhiwen. Здесь собраны исследования и практики, направленные на улучшение обработки сложных документов с помощью современных технологий, включая обучение с подкреплением и долгосрочное понимание контекста.

🚀Основные моменты:
- Модели для долгосрочного понимания документов.
- Использование обучения с подкреплением для улучшения ИИ.
- Открытые данные и методологии для сообщества.
- Проекты QwenLong-L1 и QwenLong-L1.5 с передовыми алгоритмами.
- FRAMEWORK SPELL для автономного генерации обучающих данных.

📌 GitHub: https://github.com/Tongyi-Zhiwen/Qwen-Doc

#python

@Python_Community_ru
🚀 Модели IQuest-Coder-V1 для автономного программирования

IQuest-Coder-V1 — это семейство больших языковых моделей, предназначенных для улучшения автономного программирования и интеллектуального анализа кода. Модели используют инновационную многослойную парадигму обучения, обеспечивая выдающиеся результаты на ключевых бенчмарках.

🚀 Основные моменты:
- Достигает лучших результатов на SWE-Bench и других бенчмарках.
- Обучение на основе динамики изменений в репозиториях.
- Два специализированных направления: Thinking и Instruct модели.
- Поддержка контекста до 128K токенов.
- Эффективная архитектура с рекуррентным механизмом.

📌 GitHub: https://github.com/IQuestLab/IQuest-Coder-V1

#python

@Python_Community_ru