🧠 Как превратить любой Python-объект в читаемый словарь — даже если это класс с кучей вложенных полей
Когда работаешь с API, логами или дебажишь сложные объекты — хочется увидеть весь объект как словарь, без .__dict__, без сериализации, без ручного разбора.
Вот приём, который делает это рекурсивно, красиво и гибко — с помощью dataclasses и asdict, даже если объект не был dataclass изначально.
python
from dataclasses import dataclass, asdict, is_dataclass
from types import SimpleNamespace
def deep_to_dict(obj):
if isinstance(obj, dict):
return {k: deep_to_dict(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [deep_to_dict(i) for i in obj]
elif is_dataclass(obj):
return asdict(obj)
elif isinstance(obj, SimpleNamespace):
return deep_to_dict(vars(obj))
elif hasattr(obj, '__dict__'):
return deep_to_dict(vars(obj))
else:
return obj
🧠 Рекурсивный разбор любых Python-объектов
📌 Подходит для логирования, сериализации, отладки
📌 Работает с dataclass, обычными классами, объектами из types, JSON-like структурами
📌 Можно расширить: добавить фильтрацию полей, вывод в YAML или сохранение в файл
Теперь любой “монстр из API” — превращается в читаемый словарь за одну строчку.
@Python_Community_ru
Когда работаешь с API, логами или дебажишь сложные объекты — хочется увидеть весь объект как словарь, без .__dict__, без сериализации, без ручного разбора.
Вот приём, который делает это рекурсивно, красиво и гибко — с помощью dataclasses и asdict, даже если объект не был dataclass изначально.
python
from dataclasses import dataclass, asdict, is_dataclass
from types import SimpleNamespace
def deep_to_dict(obj):
if isinstance(obj, dict):
return {k: deep_to_dict(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [deep_to_dict(i) for i in obj]
elif is_dataclass(obj):
return asdict(obj)
elif isinstance(obj, SimpleNamespace):
return deep_to_dict(vars(obj))
elif hasattr(obj, '__dict__'):
return deep_to_dict(vars(obj))
else:
return obj
🧠 Рекурсивный разбор любых Python-объектов
📌 Подходит для логирования, сериализации, отладки
📌 Работает с dataclass, обычными классами, объектами из types, JSON-like структурами
📌 Можно расширить: добавить фильтрацию полей, вывод в YAML или сохранение в файл
Теперь любой “монстр из API” — превращается в читаемый словарь за одну строчку.
@Python_Community_ru
В преддверии новой активности мы собрали в одну папку 29 Telegram-каналов известных профессионалов и попросили их авторов подготовить для вас документы, которые помогут:
Также они проводят розыгрыш с топовыми призами:
Как участвовать:
1. Подпишись на папку: https://t.iss.one/addlist/Qu1lhSIaUZVjZTFi
2. Подтверди участие в боте
До встречи 27 июля – дата подведения итогов!
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Odigos — распределенный трейсинг без модификации кода. Этот open-source проект меняет правила игры в observability-инструментах. Инструмент умеет автоматически генерировать распределенные трейсы для приложений на Java, Python, .NET, Node.js и Go без необходимости правки исходного кода.
Под капотом используется eBPF для низкоуровневой инструментации, что особенно ценно для скомпилированных языков вроде Go. Трейсы сразу экспортируются в формате OpenTelemetry, что позволяет интегрироваться с любыми совместимыми системами мониторинга.
🤖 GitHub (https://github.com/odigos-io/odigos)
@Python_Community_ru
Под капотом используется eBPF для низкоуровневой инструментации, что особенно ценно для скомпилированных языков вроде Go. Трейсы сразу экспортируются в формате OpenTelemetry, что позволяет интегрироваться с любыми совместимыми системами мониторинга.
🤖 GitHub (https://github.com/odigos-io/odigos)
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Подменяй любые импорты в Python “на лету” — без изменения кода
Если ты хочешь протестировать модуль, подменить зависимость, замокать внешний сервис или обмануть импорт — не обязательно редактировать исходники. Python позволяет перехватывать импорты прямо во время выполнения, через sys.modules.
Вот минимальный приём, который делает это прозрачно:
import sys
import types
# Создаём фейковый модуль
fake = types.SimpleNamespace()
fake.get_data = lambda: "подмена работает"
# Подменяем импорт
sys.modules['external_service'] = fake
# Теперь даже import будет работать
import external_service
print(external_service.get_data()) # → "подмена работает"
@Python_Community_ru
Если ты хочешь протестировать модуль, подменить зависимость, замокать внешний сервис или обмануть импорт — не обязательно редактировать исходники. Python позволяет перехватывать импорты прямо во время выполнения, через sys.modules.
Вот минимальный приём, который делает это прозрачно:
import sys
import types
# Создаём фейковый модуль
fake = types.SimpleNamespace()
fake.get_data = lambda: "подмена работает"
# Подменяем импорт
sys.modules['external_service'] = fake
# Теперь даже import будет работать
import external_service
print(external_service.get_data()) # → "подмена работает"
@Python_Community_ru
Inside ML: индустриальные секреты машинного обучения
Онлайн-магистратура «Искусственный интеллект» от Вышки запускает мини-курс, где разберём, как ML работает в индустрии: от Computer Vision и AutoML до LLM и мультиагентных систем.
Что вас ждёт:
— 5 вебинаров от практиков из Avito, Сбера, Ozon
— Кейсы: как выигрывают Kaggle AutoML Grand Prix, запускают CV-системы и внедряют LLM в бизнес
— Q&A с экспертами: можно спросить о задачах и карьерном треке в ML
Для кого:
— IT-специалистам, которые хотят перейти в ML или усилить свою экспертизу
— Тем, кто хочет понять, что востребовано сейчас на рынке
— Тем, кто планирует сделать шаг в сторону applied ML или сменить специализацию внутри IT
Когда: до 15 июля, 19:00 (по МСК)
🔗 Зарегистрироваться (https://www.hse.ru/ma/mlds/announcements/1058591008.html?utm_source=telegram&utm_medium=ads&utm_campaign=ai_insideml)
@Python_Community_ru
Онлайн-магистратура «Искусственный интеллект» от Вышки запускает мини-курс, где разберём, как ML работает в индустрии: от Computer Vision и AutoML до LLM и мультиагентных систем.
Что вас ждёт:
— 5 вебинаров от практиков из Avito, Сбера, Ozon
— Кейсы: как выигрывают Kaggle AutoML Grand Prix, запускают CV-системы и внедряют LLM в бизнес
— Q&A с экспертами: можно спросить о задачах и карьерном треке в ML
Для кого:
— IT-специалистам, которые хотят перейти в ML или усилить свою экспертизу
— Тем, кто хочет понять, что востребовано сейчас на рынке
— Тем, кто планирует сделать шаг в сторону applied ML или сменить специализацию внутри IT
Когда: до 15 июля, 19:00 (по МСК)
🔗 Зарегистрироваться (https://www.hse.ru/ma/mlds/announcements/1058591008.html?utm_source=telegram&utm_medium=ads&utm_campaign=ai_insideml)
@Python_Community_ru
🚀 Быстрый HTTP‑сервер на базе asyncio.Protocol
В этом гайде показано как создать минималистичный HTTP‑сервер на Python, используя низкоуровневый API asyncio.Protocol, что делает его быстрее и гибче, чем решения на основе asyncio.Streams или фреймворков типа FastAPI.
Основные пункты:
1. Сокет-обработчик (`ConnectionHandler`)
- Наследуется от asyncio.Protocol — реакции на события connection_made, data_received, connection_lost.
- Хранит буфер, транспорт и маппинг маршрутов.
2. Парсинг HTTP-запросов
- В data_received накапливаются байты.
- Запрос считается полным при обнаружении \r\n\r\n.
- Затем из заголовков извлекаются method, path, другие поля.
3. Маршрутизация через декоратор
- Класс HTTPServer собирает функции-обработчики для путей.
- Обработчик вызывает либо корутины, либо возвращает статический HTML.
4. Отправка ответа
- Используется asyncio.create_task внутри колбэка, чтобы запустить send_response — где формируется ответ с HTTP-кодом, заголовками и телом.
- После write() соединение закрывается.
5. Простой запуск сервера
- Через loop.create_server() создаётся экземпляр ConnectionHandler.
- serve_forever() запускает обработку соединений.
6. Высокая производительность
Сервер обрабатывает ~100 000 запросов за ~4.2 с при нагрузке 100 одновременных соединений, в то время как FastAPI справляется за ~32 с :contentReference[oaicite:1]{index=1}.
Зачем это полезно:
- Полный контроль над TCP-соединениями и буферами.
- Существенно выше скорость при простых HTTP-API.
- Отличная демонстрация возможностей, которые остаются скрытыми за высокоуровневыми фреймворками.
Поддержка сообщества:
На Reddit статья получила высокую оценку как "отличный материал по Asyncio Protocols"
https://jacobpadilla.com/articles/asyncio-protocols
@Python_Community_ru
В этом гайде показано как создать минималистичный HTTP‑сервер на Python, используя низкоуровневый API asyncio.Protocol, что делает его быстрее и гибче, чем решения на основе asyncio.Streams или фреймворков типа FastAPI.
Основные пункты:
1. Сокет-обработчик (`ConnectionHandler`)
- Наследуется от asyncio.Protocol — реакции на события connection_made, data_received, connection_lost.
- Хранит буфер, транспорт и маппинг маршрутов.
2. Парсинг HTTP-запросов
- В data_received накапливаются байты.
- Запрос считается полным при обнаружении \r\n\r\n.
- Затем из заголовков извлекаются method, path, другие поля.
3. Маршрутизация через декоратор
- Класс HTTPServer собирает функции-обработчики для путей.
- Обработчик вызывает либо корутины, либо возвращает статический HTML.
4. Отправка ответа
- Используется asyncio.create_task внутри колбэка, чтобы запустить send_response — где формируется ответ с HTTP-кодом, заголовками и телом.
- После write() соединение закрывается.
5. Простой запуск сервера
- Через loop.create_server() создаётся экземпляр ConnectionHandler.
- serve_forever() запускает обработку соединений.
6. Высокая производительность
Сервер обрабатывает ~100 000 запросов за ~4.2 с при нагрузке 100 одновременных соединений, в то время как FastAPI справляется за ~32 с :contentReference[oaicite:1]{index=1}.
Зачем это полезно:
- Полный контроль над TCP-соединениями и буферами.
- Существенно выше скорость при простых HTTP-API.
- Отличная демонстрация возможностей, которые остаются скрытыми за высокоуровневыми фреймворками.
Поддержка сообщества:
На Reddit статья получила высокую оценку как "отличный материал по Asyncio Protocols"
https://jacobpadilla.com/articles/asyncio-protocols
@Python_Community_ru
🔥2
🐍 20 ещё более продвинутых однострочников на Python — часть 3
Если ты уже пишешь на Python профессионально, вот ещё приёмы, которые реально экономят строки и читаются на лету:
1. 🗃️ Группировка по ключу без pandas
groups = defaultdict(list); [groups[k].append(v) for k, v in data]
2. 🪄 Быстрое глубокое копирование объекта
copy = pickle.loads(pickle.dumps(obj, -1))
3. 📤 Отправка JSON через POST
r = requests.post(url, json=payload)
4. 📌 Проверка, что файл — это символическая ссылка
is_symlink = Path(p).is_symlink()
5. 🧩 Быстрое объединение нескольких словарей
merged = {**d1, **d2, **d3}
6. 🧪 Проверить, что список отсортирован
is_sorted = all(a
@Python_Community_ru
Если ты уже пишешь на Python профессионально, вот ещё приёмы, которые реально экономят строки и читаются на лету:
1. 🗃️ Группировка по ключу без pandas
groups = defaultdict(list); [groups[k].append(v) for k, v in data]
2. 🪄 Быстрое глубокое копирование объекта
copy = pickle.loads(pickle.dumps(obj, -1))
3. 📤 Отправка JSON через POST
r = requests.post(url, json=payload)
4. 📌 Проверка, что файл — это символическая ссылка
is_symlink = Path(p).is_symlink()
5. 🧩 Быстрое объединение нескольких словарей
merged = {**d1, **d2, **d3}
6. 🧪 Проверить, что список отсортирован
is_sorted = all(a
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Продвинутый Python‑совет дня
💡 Используй слоты (`__slots__`) для оптимизации классов, когда тебе нужно много однотипных объектов.
По умолчанию Python хранит атрибуты объектов в словаре (`__dict__`), что удобно, но неэффективно по памяти. Если ты точно знаешь, какие поля будут у объекта — зафиксируй их:
class Point:
slots = ("x", "y") # только эти атрибуты допустимы
def __init__(self, x, y):
self.x = x
self.y = y```
📈 Выгода:
- Уменьшает использование памяти до 30–50% для миллионов объектов
- Ускоряет доступ к полям (нет __dict__)
- Запрещает создание произвольных новых атрибутов (меньше багов)
🧠 Подходит:
- Для численных расчётов (вместо namedtuple)
- При генерации большого количества однотипных объектов
- В data-heavy структурах (например, парсеры, AST, графы и т.п.)
Python — динамичный язык, но когда знаешь структуру данных заранее, slots дают тебе контроль и производительность.
👉 Видео (https://youtube.com/shorts/jB9QAes8OLk?feature=share)
@Python_Community_ru
💡 Используй слоты (`__slots__`) для оптимизации классов, когда тебе нужно много однотипных объектов.
По умолчанию Python хранит атрибуты объектов в словаре (`__dict__`), что удобно, но неэффективно по памяти. Если ты точно знаешь, какие поля будут у объекта — зафиксируй их:
class Point:
slots = ("x", "y") # только эти атрибуты допустимы
def __init__(self, x, y):
self.x = x
self.y = y```
📈 Выгода:
- Уменьшает использование памяти до 30–50% для миллионов объектов
- Ускоряет доступ к полям (нет __dict__)
- Запрещает создание произвольных новых атрибутов (меньше багов)
🧠 Подходит:
- Для численных расчётов (вместо namedtuple)
- При генерации большого количества однотипных объектов
- В data-heavy структурах (например, парсеры, AST, графы и т.п.)
Python — динамичный язык, но когда знаешь структуру данных заранее, slots дают тебе контроль и производительность.
👉 Видео (https://youtube.com/shorts/jB9QAes8OLk?feature=share)
@Python_Community_ru
🔥1
🖥 Полезный, но редко используемый приём: динамическое управление множеством контекст-менеджеров через `contextlib.ExitStack`
Если вам нужно открыть *N* файлов, захватить *M* блокировок или временно изменить кучу настроек, а их количество известно только во время выполнения, традиционный with … as …: не подойдёт. Вместо «пирамиды» вложенных with воспользуйтесь ExitStack:
from contextlib import ExitStack
filenames = ["a.log", "b.log", "c.log"]
with ExitStack() as stack:
files = [stack.enter_context(open(name)) for name in filenames]
# теперь у вас список открытых файлов, с которыми можно работать
for f in files:
print(f.readline())
# здесь ExitStack автоматически закроет все файлы, даже если их было 1000
Почему это круто
- Управляет произвольным числом контекстов: добавляете их в цикл, условно, через функции-фабрики.
- Гарантирует корректный rollback при исключениях: всё, что добавлено в ExitStack, будет закрыто в обратном порядке.
- Упрощает сложную инициализацию: можно динамически «подключать» то, что нужно именно сейчас (файлы, блокировки, сетевые соединения).
🔧 Где пригодится
- Пакетная обработка файлов и архивов.
- Тестовые стенды с кучей временных ресурсов.
- Плагины, которые могут регистрировать собственные контекст-менеджеры.
Теперь никакого «каскада из with» — один аккуратный ExitStack.
@Python_Community_ru
Если вам нужно открыть *N* файлов, захватить *M* блокировок или временно изменить кучу настроек, а их количество известно только во время выполнения, традиционный with … as …: не подойдёт. Вместо «пирамиды» вложенных with воспользуйтесь ExitStack:
from contextlib import ExitStack
filenames = ["a.log", "b.log", "c.log"]
with ExitStack() as stack:
files = [stack.enter_context(open(name)) for name in filenames]
# теперь у вас список открытых файлов, с которыми можно работать
for f in files:
print(f.readline())
# здесь ExitStack автоматически закроет все файлы, даже если их было 1000
Почему это круто
- Управляет произвольным числом контекстов: добавляете их в цикл, условно, через функции-фабрики.
- Гарантирует корректный rollback при исключениях: всё, что добавлено в ExitStack, будет закрыто в обратном порядке.
- Упрощает сложную инициализацию: можно динамически «подключать» то, что нужно именно сейчас (файлы, блокировки, сетевые соединения).
🔧 Где пригодится
- Пакетная обработка файлов и архивов.
- Тестовые стенды с кучей временных ресурсов.
- Плагины, которые могут регистрировать собственные контекст-менеджеры.
Теперь никакого «каскада из with» — один аккуратный ExitStack.
@Python_Community_ru