🚀 Станьте экспертом в реверс-инжиниринге и откройте для себя новые горизонты в IT.
Актуальное обучение от OTUS — это ваш старт в мир реверс-инжиниринга на практике!
👨💻 На курсе вы освоите все ключевые аспекты реверс-инжиниринга — от базовых техник и инструментов до сложных методик анализа кода, уязвимостей и патчей. Мы подготовим вас для работы с реальными кейсами, исследованием программного обеспечения и исследованиями в области безопасности.
❗️ Запись на онлайн-курсе "Reverse-Engineering" от OTUS закрывается! Оставьте заявку и получите скидку на обучение по промокодуREVERSE6 : https://clck.ru/3Mtsbb
Актуальное обучение от OTUS — это ваш старт в мир реверс-инжиниринга на практике!
👨💻 На курсе вы освоите все ключевые аспекты реверс-инжиниринга — от базовых техник и инструментов до сложных методик анализа кода, уязвимостей и патчей. Мы подготовим вас для работы с реальными кейсами, исследованием программного обеспечения и исследованиями в области безопасности.
❗️ Запись на онлайн-курсе "Reverse-Engineering" от OTUS закрывается! Оставьте заявку и получите скидку на обучение по промокоду
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
🧩 Задача для разминки
Что выведет этот код? Попробуй догадаться без запуска.
class Sneaky:
def __eq__(self, other):
print("Comparing!")
return True
a = Sneaky()
b = [a]
print(a in b)
print(a == b[0])
print(b.count(a))
🤔 Подумай: сколько раз вызовется eq?
🎯 Разбор:
print(a in b)
🔍 Проверка a in b вызывает b.__contains__(a), который по умолчанию использует ==.
👉 Вызовется eq, будет True.
print(a == b[0])
🔍 Прямое сравнение — снова eq.
print(b.count(a))
🔍 list.count сравнивает каждый элемент с ==. В нашем списке один элемент — a.
👉 Опять вызывается eq.
💥 Вывод будет:
Comparing!
True
Comparing!
True
Comparing!
1
📌 Вывод: __eq__ сработал 3 раза, и каждый раз напечатал "Comparing!".
🧠 Уловка: Python-списки используют ==, даже если это один и тот же объект! Да, a == a всё равно вызовет __eq__, если он определён.
⚠️ Фишка для интервью:
Можно подменить поведение ==, но is (сравнение идентичности) всегда быстрее и не вызывает магии.
@Python_Community_ru
Что выведет этот код? Попробуй догадаться без запуска.
class Sneaky:
def __eq__(self, other):
print("Comparing!")
return True
a = Sneaky()
b = [a]
print(a in b)
print(a == b[0])
print(b.count(a))
🤔 Подумай: сколько раз вызовется eq?
🎯 Разбор:
print(a in b)
🔍 Проверка a in b вызывает b.__contains__(a), который по умолчанию использует ==.
👉 Вызовется eq, будет True.
print(a == b[0])
🔍 Прямое сравнение — снова eq.
print(b.count(a))
🔍 list.count сравнивает каждый элемент с ==. В нашем списке один элемент — a.
👉 Опять вызывается eq.
💥 Вывод будет:
Comparing!
True
Comparing!
True
Comparing!
1
📌 Вывод: __eq__ сработал 3 раза, и каждый раз напечатал "Comparing!".
🧠 Уловка: Python-списки используют ==, даже если это один и тот же объект! Да, a == a всё равно вызовет __eq__, если он определён.
⚠️ Фишка для интервью:
Можно подменить поведение ==, но is (сравнение идентичности) всегда быстрее и не вызывает магии.
@Python_Community_ru
💻 Хочешь работать с масштабными цифровыми продуктами? Учись обрабатывать большие данные
MLOps — все более популярный среди компаний способ повышения производительности и создания надежных моделей корпоративного уровня.
✅ Владение инструментами MLOps открывает новые карьерные горизонты специалистам ML, Data Scientist’ам и Software инженерам.
💪 Ответьте на 10 вопросов и проверьте, насколько вы готовы к обучению на продвинутом курсе «MLOps» от OTUS. Cкидка на обучение по промокодуMLOPS_5 :
ПРОЙТИ ТЕСТ: https://clck.ru/3MuZiD
MLOps — все более популярный среди компаний способ повышения производительности и создания надежных моделей корпоративного уровня.
✅ Владение инструментами MLOps открывает новые карьерные горизонты специалистам ML, Data Scientist’ам и Software инженерам.
💪 Ответьте на 10 вопросов и проверьте, насколько вы готовы к обучению на продвинутом курсе «MLOps» от OTUS. Cкидка на обучение по промокоду
ПРОЙТИ ТЕСТ: https://clck.ru/3MuZiD
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
🔥 CAI — ИИ для поиска багов от Alias Robotics
Что это такое?
CAI — лёгкий фреймворк для создания AI-агентов, которые помогают автоматизировать поиск и проверку уязвимостей.
Как это работает?
- Загружаете YAML-конфиги
Опишите сценарии поиска багов, тестов и отчётов в простых текстовых файлах.
- LLM-агенты
AI-модель эмулирует протоколы (SSH, HTTP, TCP и другие) и взаимодействует с целевыми системами как настоящий тестировщик.
- Генерация и «разогрев» данных
Создавайте синтетические запросы для обучения и быстро запускайте агента на своих данных.
- Оффлайн-оценка
Собирайте результаты тестов и анализируйте их без постоянного подключения к интернету.
Зачем использовать CAI?
- Ускоряет подготовку и запуск тестов безопасности
- Позволяет гибко настраивать шаги проверки
- Повышает прозрачность и повторяемость отчётов о найденных уязвимостях
Установка и запуск:
git clone https://github.com/aliasrobotics/cai.git
cd cai
# отредактируйте config.yaml и запустите агента
📌 Github (https://github.com/aliasrobotics/cai)
@Python_Community_ru
Что это такое?
CAI — лёгкий фреймворк для создания AI-агентов, которые помогают автоматизировать поиск и проверку уязвимостей.
Как это работает?
- Загружаете YAML-конфиги
Опишите сценарии поиска багов, тестов и отчётов в простых текстовых файлах.
- LLM-агенты
AI-модель эмулирует протоколы (SSH, HTTP, TCP и другие) и взаимодействует с целевыми системами как настоящий тестировщик.
- Генерация и «разогрев» данных
Создавайте синтетические запросы для обучения и быстро запускайте агента на своих данных.
- Оффлайн-оценка
Собирайте результаты тестов и анализируйте их без постоянного подключения к интернету.
Зачем использовать CAI?
- Ускоряет подготовку и запуск тестов безопасности
- Позволяет гибко настраивать шаги проверки
- Повышает прозрачность и повторяемость отчётов о найденных уязвимостях
Установка и запуск:
git clone https://github.com/aliasrobotics/cai.git
cd cai
# отредактируйте config.yaml и запустите агента
📌 Github (https://github.com/aliasrobotics/cai)
@Python_Community_ru
🚀Углубленные навыки разработки на C++ востребованы в самых крупных IT-компаниях, готовы перейти на новый уровень?
Курс «C++ Developer. Professional» создан для разработчиков, которые хотят углубить свои знания в C++ и подготовиться к решениям реальных задач. Вы освоите передовые практики, такие как многопоточное программирование, новые стандарты C++ 20 и 23, а также научитесь работать с сетями и базами данных.
Пройдите обучение с OTUS и получите знания, которые сделают вас ценным специалистом в любой компании. Получите диплом OTUS, который признают ведущие работодатели.
⌛️Время ограничено! Успейте пройти вступительное тестирование и получить скидку на обучение. Старт курса уже скоро — не упустите свой шанс: https://clck.ru/3MuyLe
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Курс «C++ Developer. Professional» создан для разработчиков, которые хотят углубить свои знания в C++ и подготовиться к решениям реальных задач. Вы освоите передовые практики, такие как многопоточное программирование, новые стандарты C++ 20 и 23, а также научитесь работать с сетями и базами данных.
Пройдите обучение с OTUS и получите знания, которые сделают вас ценным специалистом в любой компании. Получите диплом OTUS, который признают ведущие работодатели.
⌛️Время ограничено! Успейте пройти вступительное тестирование и получить скидку на обучение. Старт курса уже скоро — не упустите свой шанс: https://clck.ru/3MuyLe
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
This media is not supported in your browser
VIEW IN TELEGRAM
📊 Vizro — low-code инструмент для создания дашбордов на Python. Интересный проект для аналитиков и дата-инженеров, позволяющий собирать интерактивные дашборды буквально в несколько строк кода. Основан на связке Plotly + Dash + Pydantic, но скрывает сложность за простым декларативным синтаксисом в JSON/YAML/Python-словарях.
Библиотека имеет встроенные best practices по визуализации данных и возможность кастомизировать всё через Python/JS, когда low-code возможностей недостаточно. Готовые дашборды выглядят профессионально и сразу готовы к продакшену.
🤖 GitHub (https://github.com/mckinsey/vizro)
@Python_Community_ru
Библиотека имеет встроенные best practices по визуализации данных и возможность кастомизировать всё через Python/JS, когда low-code возможностей недостаточно. Готовые дашборды выглядят профессионально и сразу готовы к продакшену.
🤖 GitHub (https://github.com/mckinsey/vizro)
@Python_Community_ru