PyVision | پای‌ویژن
68 subscribers
63 photos
41 files
113 links
آموزش زبان برنامه‌نویسی Python 🐍
از مفاهیم پایه تا مباحث پیشرفته و کاربردی
ورود به دنیای هوش مصنوعی💻
یاد بگیریم،
تمرین کنیم،
حرفه‌ای شویم.

Step by Step Python Programming Tutorial
From Basics to Advanced Projects & AI

ارتباط با ادمین:
🌐 @Its_poryaa
Download Telegram
PyVision | پای‌ویژن
📊 کتابخانه Statsmodels ابزاری متفاوت برای تحلیل داده‌هاست؛ جایی که «تفسیر آماری» از «صرفاً پیش‌بینی» مهم‌تر می‌شود. اگر می‌خواهید بدانید این کتابخانه دقیقاً چه کاری انجام می‌دهد و چه زمانی باید از آن استفاده کرد، 👇🏽پست بعدی را دنبال کنید. 🌐 @PyVision
📘 معرفی کتابخانه Statsmodels
تحلیل آماری و مدل‌سازی کلاسیک در پایتون

کتابخانه Statsmodels یک کتابخانه‌ی تخصصی پایتون برای تحلیل آماری، مدل‌سازی داده‌ها و استنباط علمی است.
این کتابخانه بیشتر از آن‌که به دنبال صرفاً «پیش‌بینی» باشد، روی فهم رابطه‌ی بین متغیرها و تفسیر نتایج تمرکز دارد.
به همین دلیل، Statsmodels در حوزه‌هایی مانند تحلیل داده، اقتصادسنجی(Econometrics)، علوم اجتماعی و پژوهش‌های دانشگاهی بسیار پرکاربرد است.

🔹 چه کاری برای ما انجام می‌دهد؟

با استفاده از Statsmodels می‌توانیم:
● روابط بین متغیرها را به‌صورت آماری بررسی کنیم
● اثر هر متغیر را به‌طور شفاف تحلیل کنیم
● معنی‌داری آماری نتایج را بسنجیم
● خروجی‌هایی قابل استناد برای گزارش و مقاله تولید کنیم
■ این کتابخانه کمک می‌کند بفهمیم چرا یک مدل کار می‌کند، نه فقط این‌که چقدر دقیق است.

🔹 قابلیت‌های اصلی این کتابخانه

1️⃣ مدل‌های رگرسیون کلاسیک
● رگرسیون خطی (OLS)
● رگرسیون لجستیک
● مدل‌های خطی تعمیم‌یافته (GLM)
■ در خروجی این مدل‌ها اطلاعاتی مانند ضرایب، مقدار p-value، بازه اطمینان و شاخص‌های برازش مدل ارائه می‌شود.


2️⃣ تحلیل آماری و آزمون فرضیه
● آزمون‌های آماری پرکاربرد
● بررسی توزیع داده‌ها
● تحلیل همبستگی
● تحلیل واریانس (ANOVA)
■ این بخش برای تصمیم‌گیری علمی و داده‌محور اهمیت زیادی دارد.

3️⃣ تحلیل سری‌های زمانی (Time Series)
● مدل‌های AR، MA، ARIMA و SARIMA
● بررسی روند، فصل‌پذیری و نوسانات
● پیش‌بینی داده‌های وابسته به زمان
■ مناسب برای داده‌های اقتصادی، مالی، فروش و هر نوع داده‌ی زمانی واقعی

4️⃣ تمرکز بر تفسیر نتایج (نقطه قوت اصلی)
کتابخانه Statsmodels خروجی‌هایی ارائه می‌دهد که:
● کاملاً قابل تفسیر هستند
● برای گزارش‌های علمی و مدیریتی مناسب‌اند
● نشان می‌دهند کدام متغیرها اثرگذار و کدام بی‌تأثیرند


🔹 کتابخانه Statsmodels در کنار یادگیری ماشین

در پروژه‌ها، Statsmodels اغلب در کنار کتابخانه‌های یادگیری ماشین استفاده می‌شود:
● یادگیری ماشین برای پیش‌بینی
● کتابخانه Statsmodels برای تحلیل و تفسیر آماری
■ این ترکیب، دید عمیق‌تری نسبت به داده‌ها ایجاد می‌کند.

🔹 چه زمانی Statsmodels انتخاب مناسبی است؟

وقتی تفسیر آماری نتایج اهمیت دارد
وقتی پروژه پژوهشی یا تحلیلی انجام می‌دهیم
وقتی نیاز به آزمون فرضیه داریم
وقتی گزارش علمی یا تحلیلی می‌نویسیم


📌 منبع:
🔘 Statsmodels Docs

#️⃣ #تحلیل_آماری #مدل_سازی #علم_داده #پایتون
#Statsmodels #Statistics #DataAnalysis #Python

🌐 @PyVision
🤩1