❓با توجه به کد زیر، خروجی نهایی دو دستور print چیست؟
و کدام یک از دو آبجکت a و b شناسهٔ (id) جدید میگیرد؟
❓️Given the code below, what is the final output of the two print?
And which one of the two objects, a or b, receives a new id?
🔍 نکتهٔ
● تاپل (tuple) غیرقابلتغییر است و += یک آبجکت جدید میسازد.
● لیست (list) قابلتغییر است و += روی همان آبجکت قبلی اعمال میشود.
#️⃣ #برنامه_نویسی #آموزش_پایتون #پای_ویژن
#Python #PythonChallenge #PythonTypes #CodingChallenge #PyVision
🌐 @PyVision
و کدام یک از دو آبجکت a و b شناسهٔ (id) جدید میگیرد؟
❓️Given the code below, what is the final output of the two print?
And which one of the two objects, a or b, receives a new id?
a = (1, 2, 3)
b = [1, 2, 3]
a += (4, 5)
b += [4, 5]
print(a)
print(b)
🔍 نکتهٔ
● تاپل (tuple) غیرقابلتغییر است و += یک آبجکت جدید میسازد.
● لیست (list) قابلتغییر است و += روی همان آبجکت قبلی اعمال میشود.
#️⃣ #برنامه_نویسی #آموزش_پایتون #پای_ویژن
#Python #PythonChallenge #PythonTypes #CodingChallenge #PyVision
🌐 @PyVision
🔥3
PyVision | پایویژن
❓با توجه به کد زیر، خروجی نهایی دو دستور print چیست؟ و کدام یک از دو آبجکت a و b شناسهٔ (id) جدید میگیرد؟ ❓️Given the code below, what is the final output of the two print? And which one of the two objects, a or b, receives a new id? a = (1, 2, 3) b = [1…
✅ پاسخ چالش
🔢 خروجی دستور های ()print:
🟢 در این چالش با تفاوت بین دو نوع دادهی مهم روبهرو هستیم:
● تاپل (tuple) یک نوع داده غیرقابلتغییر (immutable) است.
بنابراین عملگر += نمیتواند آن را در همان حافظه تغییر دهد و یک آبجکت جدید میسازد؛ به همین دلیل id(a) تغییر میکند.
● لیست (list) یک نوع داده قابلتغییر (mutable) است.
عملگر += روی لیست بهصورت in-place اجرا میشود و عناصر جدید به همان آبجکت قبلی اضافه میشوند؛ بنابراین id(b) تغییر نمیکند.
📌 نتیجه:
● a → آبجکت جدید میگیرد
● b → همان آبجکت قبلی باقی میماند
🟢 This challenge highlights the difference between mutable and immutable types in Python:
● A tuple is immutable, so the += operator cannot modify it in place.
Instead, Python creates a new object, which means the id of a changes.
● A list is mutable, and += modifies it in place.
New elements are added to the same object, so the id of b remains unchanged.
📌 Final result:
● a → gets a new object (id changes)
● b → stays the same object (id does not change)
#️⃣ #آموزش_پایتون #چالش #نوع_داده #برنامه_نویسی
#Python #PythonChallenge #PythonTypes #Programming #PyVision
🌐 @PyVision
🔢 خروجی دستور های ()print:
(1, 2, 3, 4, 5)
[1, 2, 3, 4, 5]
🟢 در این چالش با تفاوت بین دو نوع دادهی مهم روبهرو هستیم:
● تاپل (tuple) یک نوع داده غیرقابلتغییر (immutable) است.
بنابراین عملگر += نمیتواند آن را در همان حافظه تغییر دهد و یک آبجکت جدید میسازد؛ به همین دلیل id(a) تغییر میکند.
● لیست (list) یک نوع داده قابلتغییر (mutable) است.
عملگر += روی لیست بهصورت in-place اجرا میشود و عناصر جدید به همان آبجکت قبلی اضافه میشوند؛ بنابراین id(b) تغییر نمیکند.
📌 نتیجه:
● a → آبجکت جدید میگیرد
● b → همان آبجکت قبلی باقی میماند
🟢 This challenge highlights the difference between mutable and immutable types in Python:
● A tuple is immutable, so the += operator cannot modify it in place.
Instead, Python creates a new object, which means the id of a changes.
● A list is mutable, and += modifies it in place.
New elements are added to the same object, so the id of b remains unchanged.
📌 Final result:
● a → gets a new object (id changes)
● b → stays the same object (id does not change)
#️⃣ #آموزش_پایتون #چالش #نوع_داده #برنامه_نویسی
#Python #PythonChallenge #PythonTypes #Programming #PyVision
🌐 @PyVision
👍3🤩1
📘اصطلاحات پرکاربرد دنیای یادگیری ماشین (Machine Learning)
قسمت اول
1️⃣ Machine Learning (یادگیری ماشین)
شاخهای از هوش مصنوعی که به سیستمها این امکان را میدهد تا از دادهها یاد بگیرند و بدون نیاز به برنامهنویسی دقیق تصمیم بگیرند.
2️⃣ Dataset (دیتاست)
مجموعهای از دادهها که برای آموزش، ارزیابی یا آزمایش مدل استفاده میشود.
3️⃣ Feature (ویژگی)
ویژگی یا خصوصیت دادهها که به عنوان ورودی به مدل داده میشود.
4️⃣ Label / Target (برچسب / هدف)
خروجی یا پاسخ صحیح هر نمونه داده که مدل باید آن را پیشبینی کند.
5️⃣ Supervised Learning (یادگیری نظارتشده)
یادگیری با دادههای برچسبخورده برای پیشبینی خروجی. شامل مسائل طبقهبندی و رگرسیون است.
6️⃣ Classification (طبقهبندی)
پیشبینی یک دسته یا کلاس برای دادهها، مانند تشخیص اسپم یا غیر اسپم.
7️⃣ Regression (رگرسیون)
پیشبینی مقادیر پیوسته، مانند پیشبینی قیمت یک خانه بر اساس ویژگیهای آن.
8️⃣ Overfitting (بیشبرازش)
وقتی مدل خیلی به دادههای آموزش تطبیق مییابد و عملکرد ضعیفی در دادههای جدید دارد.
9️⃣ Accuracy (دقت)
نسبت پیشبینیهای صحیح به کل نمونهها. یکی از معیارهای ارزیابی مدل.
🔟 Cross-Validation
روش ارزیابی مدل که در آن دادهها به چند بخش تقسیم میشوند تا از آنها برای آموزش و ارزیابی مدل استفاده شود.
📌 منبع:
🔘 Scikit-Learn
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #علم_داده #آموزش_ماشین_لرنینگ
#MachineLearning #ArtificialIntelligence #DataScience #MLBasics #PyVision
🌐 @PyVision
قسمت اول
1️⃣ Machine Learning (یادگیری ماشین)
شاخهای از هوش مصنوعی که به سیستمها این امکان را میدهد تا از دادهها یاد بگیرند و بدون نیاز به برنامهنویسی دقیق تصمیم بگیرند.
2️⃣ Dataset (دیتاست)
مجموعهای از دادهها که برای آموزش، ارزیابی یا آزمایش مدل استفاده میشود.
3️⃣ Feature (ویژگی)
ویژگی یا خصوصیت دادهها که به عنوان ورودی به مدل داده میشود.
4️⃣ Label / Target (برچسب / هدف)
خروجی یا پاسخ صحیح هر نمونه داده که مدل باید آن را پیشبینی کند.
5️⃣ Supervised Learning (یادگیری نظارتشده)
یادگیری با دادههای برچسبخورده برای پیشبینی خروجی. شامل مسائل طبقهبندی و رگرسیون است.
6️⃣ Classification (طبقهبندی)
پیشبینی یک دسته یا کلاس برای دادهها، مانند تشخیص اسپم یا غیر اسپم.
7️⃣ Regression (رگرسیون)
پیشبینی مقادیر پیوسته، مانند پیشبینی قیمت یک خانه بر اساس ویژگیهای آن.
8️⃣ Overfitting (بیشبرازش)
وقتی مدل خیلی به دادههای آموزش تطبیق مییابد و عملکرد ضعیفی در دادههای جدید دارد.
9️⃣ Accuracy (دقت)
نسبت پیشبینیهای صحیح به کل نمونهها. یکی از معیارهای ارزیابی مدل.
🔟 Cross-Validation
روش ارزیابی مدل که در آن دادهها به چند بخش تقسیم میشوند تا از آنها برای آموزش و ارزیابی مدل استفاده شود.
📌 منبع:
🔘 Scikit-Learn
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #علم_داده #آموزش_ماشین_لرنینگ
#MachineLearning #ArtificialIntelligence #DataScience #MLBasics #PyVision
🌐 @PyVision
🤩2
PyVision | پایویژن
اگر میخواهید با یکی از مهمترین کتابخانههای یادگیری ماشین (Machine Learning) آشنا شوید، پست بعدی را از دست ندهید. ✅️ 🌐 @PyVision
📘معرفی ویژگیها و قابلیتهای Scikit-Learn
بخش اول: Supervised Learning
در مسیر آشنایی با کتابخانهی Scikit-Learn، یکی از مهمترین و پرکاربردترین بخشها،
یادگیری نظارتشده (Supervised Learning) است؛
جایی که مدلها با دادههای برچسبخورده آموزش میبینند و یاد میگیرند چگونه پیشبینی کنند.
🔹️ این بخش مجموعهای از الگوریتمها و ابزارها را در اختیار ما میگذارد برای:
✔️ طبقهبندی (Classification)
برای پاسخ به سؤالهایی مثل:
«این داده متعلق به کدام دسته است؟»
✔️ رگرسیون (Regression)
برای پیشبینی مقادیر عددی مانند قیمت، زمان، میزان و…
🔹 چرا Scikit-Learn در این حوزه محبوب است؟
چون:
■ الگوریتمها با یک الگوی ساده و یکسان (fit و predict) کار میکنند
■ پیادهسازیها استاندارد و قابل مقایسه هستند
■ یادگیری مفاهیم پایه تا سطح کاربردی را ساده میکند
🔹 کاربردهای رایج Supervised Learning
■ پیشبینی روندها (بسان پیشبینی قیمتها، پیشبینی روندهای آماری)
■ تحلیل رفتار کاربران
■ طبقهبندی دادههای متنی و عددی و...
📌 منبع:
🔘 Scikit-Learn
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #آموزش_پایتون #علم_داده #یادگیری_نظارت_شده #پای_ویژن
#SupervisedLearning
#MachineLearning #ArtificialIntelligence #ScikitLearn #DataScience #PyVision
🌐 @PyVision
بخش اول: Supervised Learning
در مسیر آشنایی با کتابخانهی Scikit-Learn، یکی از مهمترین و پرکاربردترین بخشها،
یادگیری نظارتشده (Supervised Learning) است؛
جایی که مدلها با دادههای برچسبخورده آموزش میبینند و یاد میگیرند چگونه پیشبینی کنند.
🔹️ این بخش مجموعهای از الگوریتمها و ابزارها را در اختیار ما میگذارد برای:
✔️ طبقهبندی (Classification)
برای پاسخ به سؤالهایی مثل:
«این داده متعلق به کدام دسته است؟»
✔️ رگرسیون (Regression)
برای پیشبینی مقادیر عددی مانند قیمت، زمان، میزان و…
🔹 چرا Scikit-Learn در این حوزه محبوب است؟
چون:
■ الگوریتمها با یک الگوی ساده و یکسان (fit و predict) کار میکنند
■ پیادهسازیها استاندارد و قابل مقایسه هستند
■ یادگیری مفاهیم پایه تا سطح کاربردی را ساده میکند
🔹 کاربردهای رایج Supervised Learning
■ پیشبینی روندها (بسان پیشبینی قیمتها، پیشبینی روندهای آماری)
■ تحلیل رفتار کاربران
■ طبقهبندی دادههای متنی و عددی و...
📌 منبع:
🔘 Scikit-Learn
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #آموزش_پایتون #علم_داده #یادگیری_نظارت_شده #پای_ویژن
#SupervisedLearning
#MachineLearning #ArtificialIntelligence #ScikitLearn #DataScience #PyVision
🌐 @PyVision
👌3
Mathematical_Engineering_of_Deep_Learning_Benoit_Liquet,_Sarat_Moka.pdf
30.3 MB
📚 معرفی کتاب:
قسمت نوزدهم
The Mathematical Engineering of Deep Learning
نویسندگان:
Benoit Liquet, Sarat Moka, Yoni Nazarathy
📊 سطح: پیشرفته
🗣 زبان: انگلیسی
💎 ویژگیهای منحصر به فرد کتاب:
● رویکرد مهندسی ریاضی به جای صرفاً نظری
● ترکیب مباحث پیشرفته ریاضی با پیادهسازی عملی
● منبع اختصاصی برای درک ریاضیات شبکههای عصبی عمیق (DNN)
✨ آنچه این کتاب را خاص میکند:
● آموزش ریاضیات پیشرفته به زبانی مهندسی و کاربردی
● تمرکز بر شبکههای عصبی عمیق و معماریهای مدرن
● ارائه کدهای عملی و مثالهای پیادهسازی شده
📖 سرفصلهای کلیدی:
● مبانی ریاضی شبکههای عصبی
● بهینهسازی درفضایهای ابعاد بالا
● نظریه تقریب (Approximation theory) و عمق شبکهها
● یادگیری عمیق احتمالاتی
● ریاضیات پشتِ مکانیزیم توجه (Attention) و ترنسفورمرها
▫️این کتاب برای کسانی که میخواهند پایههای ریاضی قوی برای کاربا شبکههای عصبی عمیق بسازند، ایدهآل است.
📌 منبع:
🔘 deeplearningmath.org
#️⃣ #ریاضیات_یادگیری_عمیق #مهندسی_ریاضی #هوش_مصنوعی #کتاب_تخصصی #کتاب_نوزدهم
#DeepLearningMath #AI #MachineLearning #NeuralNetworks #PyVision
🌐 @PyVision
قسمت نوزدهم
The Mathematical Engineering of Deep Learning
نویسندگان:
Benoit Liquet, Sarat Moka, Yoni Nazarathy
📊 سطح: پیشرفته
🗣 زبان: انگلیسی
💎 ویژگیهای منحصر به فرد کتاب:
● رویکرد مهندسی ریاضی به جای صرفاً نظری
● ترکیب مباحث پیشرفته ریاضی با پیادهسازی عملی
● منبع اختصاصی برای درک ریاضیات شبکههای عصبی عمیق (DNN)
✨ آنچه این کتاب را خاص میکند:
● آموزش ریاضیات پیشرفته به زبانی مهندسی و کاربردی
● تمرکز بر شبکههای عصبی عمیق و معماریهای مدرن
● ارائه کدهای عملی و مثالهای پیادهسازی شده
📖 سرفصلهای کلیدی:
● مبانی ریاضی شبکههای عصبی
● بهینهسازی درفضایهای ابعاد بالا
● نظریه تقریب (Approximation theory) و عمق شبکهها
● یادگیری عمیق احتمالاتی
● ریاضیات پشتِ مکانیزیم توجه (Attention) و ترنسفورمرها
▫️این کتاب برای کسانی که میخواهند پایههای ریاضی قوی برای کاربا شبکههای عصبی عمیق بسازند، ایدهآل است.
📌 منبع:
🔘 deeplearningmath.org
#️⃣ #ریاضیات_یادگیری_عمیق #مهندسی_ریاضی #هوش_مصنوعی #کتاب_تخصصی #کتاب_نوزدهم
#DeepLearningMath #AI #MachineLearning #NeuralNetworks #PyVision
🌐 @PyVision
🔥3
📚 مرور کتابها
قسمت اول
در این پست مروری داریم بر معتبرترین کتابها و منابع آموزشی (۱۰ کتاب اول) که تا بدین لحظه در کانال معرفی شدهاند:
1. Python Crash Course
2. Head First Python
3. Python Programming for Beginners
4. Automate the Boring Stuff with Python
5. Fluent Python
6. Effective Python
7. Programming Python
8. Python for Data Analysis
9. Hands-On Machine Learning
10. Introduction to Machine Learning with Python
✨️یاد بگیریم، تمرین کنیم، حرفهای شویم.👨🏽💻
#️⃣ #کتاب_پایتون #آموزش_پایتون #منابع_آموزشی #پایتون #برنامه_نویسی #کتاب #پای_ویژن
#PythonBooks #PythonLearning #ProgrammingResources #book #Python #PyVision
🌐 @PyVision
قسمت اول
در این پست مروری داریم بر معتبرترین کتابها و منابع آموزشی (۱۰ کتاب اول) که تا بدین لحظه در کانال معرفی شدهاند:
1. Python Crash Course
2. Head First Python
3. Python Programming for Beginners
4. Automate the Boring Stuff with Python
5. Fluent Python
6. Effective Python
7. Programming Python
8. Python for Data Analysis
9. Hands-On Machine Learning
10. Introduction to Machine Learning with Python
✨️یاد بگیریم، تمرین کنیم، حرفهای شویم.👨🏽💻
#️⃣ #کتاب_پایتون #آموزش_پایتون #منابع_آموزشی #پایتون #برنامه_نویسی #کتاب #پای_ویژن
#PythonBooks #PythonLearning #ProgrammingResources #book #Python #PyVision
🌐 @PyVision
👌3
🧩 خروجی کد زیر چیست؟
🧩 What's the output?
#️⃣ #چالش_پایتون #حلقه_وایل #منطق_برنامه_نویسی #آموزش_کدنویسی
#PythonChallenge #WhileLoop #ProgrammingLogic #LearnPython #PyVision
🌐 @PyVision
🧩 What's the output?
x = 1
while x < 10:
if x % 3 == 0:
x += 2
continue
x += 1
print(x)
#️⃣ #چالش_پایتون #حلقه_وایل #منطق_برنامه_نویسی #آموزش_کدنویسی
#PythonChallenge #WhileLoop #ProgrammingLogic #LearnPython #PyVision
🌐 @PyVision
🤩2
📘 هوش مصنوعی (Artificial Intelligence) چیست؟
هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛
مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله.
این سیستمها بهجای پیروی از دستورهای کاملاً ثابت، با دادهها آموزش میبینند و بهمرور دقیقتر میشوند. 🤖✨
🔹 زیرمجموعههای اصلی هوش مصنوعی
1️⃣ یادگیری ماشین (Machine Learning)
در این روش، ماشین با بررسی دادهها الگوها را یاد میگیرد و بدون برنامهنویسی مستقیم، عملکرد خود را بهبود میدهد.
⚪️ مثال: سیستمهای پیشنهاددهنده فیلم، موسیقی یا کالا
2️⃣ یادگیری عمیق (Deep Learning)
شاخهای پیشرفته از یادگیری ماشین که از شبکههای عصبی چندلایه الهامگرفته از مغز انسان استفاده میکند.
⚪️ مثال: تشخیص چهره، تشخیص گفتار و تحلیل تصاویر پزشکی
3️⃣ پردازش زبان طبیعی (NLP)
این حوزه به ماشین کمک میکند زبان انسان را بفهمد، پردازش کند و پاسخ مناسب تولید کند.
⚪️ مثال: چتباتها، ترجمه ماشینی و خلاصهسازی متن
4️⃣ بینایی ماشین (Computer Vision)
توانایی تحلیل و درک تصاویر و ویدئوها توسط سیستمهای کامپیوتری.
⚪️ مثال: خودروهای خودران و سیستمهای نظارت تصویری
5️⃣ سیستمهای خبره (Expert Systems)
سیستمهایی که دانش و تجربهی یک متخصص انسانی را شبیهسازی میکنند.
⚪️ مثال: سیستمهای تشخیص بیماری یا تحلیل ریسک
✅️ در پستهای بعدی، هر یک از این زیرشاخهها را بهصورت جداگانه و ساده بررسی میکنیم و با کاربردهای آنها بیشتر آشنا میشویم.
📌 منابع:
🔘 www.ibm.com
🔘developers.google.com
🔘web.stanford.edu
#️⃣ #هوش_مصنوعی #یادگیری_ماشین #فناوری #تحلیل_داده #برنامه_نویسی
#ArtificialIntelligence #MachineLearning #DeepLearning #AI #DataScience #PyVision
🌐 @PyVision
هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛
مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله.
این سیستمها بهجای پیروی از دستورهای کاملاً ثابت، با دادهها آموزش میبینند و بهمرور دقیقتر میشوند. 🤖✨
🔹 زیرمجموعههای اصلی هوش مصنوعی
1️⃣ یادگیری ماشین (Machine Learning)
در این روش، ماشین با بررسی دادهها الگوها را یاد میگیرد و بدون برنامهنویسی مستقیم، عملکرد خود را بهبود میدهد.
⚪️ مثال: سیستمهای پیشنهاددهنده فیلم، موسیقی یا کالا
2️⃣ یادگیری عمیق (Deep Learning)
شاخهای پیشرفته از یادگیری ماشین که از شبکههای عصبی چندلایه الهامگرفته از مغز انسان استفاده میکند.
⚪️ مثال: تشخیص چهره، تشخیص گفتار و تحلیل تصاویر پزشکی
3️⃣ پردازش زبان طبیعی (NLP)
این حوزه به ماشین کمک میکند زبان انسان را بفهمد، پردازش کند و پاسخ مناسب تولید کند.
⚪️ مثال: چتباتها، ترجمه ماشینی و خلاصهسازی متن
4️⃣ بینایی ماشین (Computer Vision)
توانایی تحلیل و درک تصاویر و ویدئوها توسط سیستمهای کامپیوتری.
⚪️ مثال: خودروهای خودران و سیستمهای نظارت تصویری
5️⃣ سیستمهای خبره (Expert Systems)
سیستمهایی که دانش و تجربهی یک متخصص انسانی را شبیهسازی میکنند.
⚪️ مثال: سیستمهای تشخیص بیماری یا تحلیل ریسک
✅️ در پستهای بعدی، هر یک از این زیرشاخهها را بهصورت جداگانه و ساده بررسی میکنیم و با کاربردهای آنها بیشتر آشنا میشویم.
📌 منابع:
🔘 www.ibm.com
🔘developers.google.com
🔘web.stanford.edu
#️⃣ #هوش_مصنوعی #یادگیری_ماشین #فناوری #تحلیل_داده #برنامه_نویسی
#ArtificialIntelligence #MachineLearning #DeepLearning #AI #DataScience #PyVision
🌐 @PyVision
❤3👌1
PyVision | پایویژن
📘 هوش مصنوعی (Artificial Intelligence) چیست؟ هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛ مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله. این سیستمها بهجای پیروی از دستورهای…
📘 پردازش زبان طبیعی (Natural Language Processing | NLP) چیست؟
پردازش زبان طبیعی یکی از زیرمجموعههای مهم هوش مصنوعی است که به سیستمها این توانایی را میدهد تا زبان انسان (متن و گفتار) را درک کنند، تحلیل کنند و پاسخ مناسب تولید کنند.
هدف NLP این است که ارتباط بین انسان و ماشین تا حد ممکن طبیعی و شبیه گفتوگوی انسانی شود. 💬🤖
به زبان ساده:
پردازش زبان طبیعی (NLP) به کامپیوتر یاد میدهد بفهمد ما چه میگوییم و چه مینویسیم.
🔹پردازش زبان طبیعی دقیقاً چه کارهایی انجام میدهد؟
● درک معنای متن
● تحلیل ساختار جملات
● تشخیص احساسات و نیت کاربران
● تولید متن یا پاسخ هوشمند
● پردازش گفتار انسان
🔹 نمونه کاربردهای پردازش زبان طبیعی
⚪️ تحلیل متن (Text Analysis)
● تحلیل احساسات (مثبت، منفی، خنثی)
● دستهبندی متون
● استخراج کلمات کلیدی
⚪️ پردازش گفتار (Speech Processing)
● تبدیل گفتار به متن (Speech to Text)
● تبدیل متن به گفتار (Text to Speech)
⚪️ سیستمهای مکالمهای
● چتباتها
● دستیارهای هوشمند
● پاسخگویی خودکار به کاربران
⚪️ ترجمه و تولید زبان
● ترجمه ماشینی
● خلاصهسازی متن
● تولید متن هوشمند
✨ پردازش زبان طبیعی یکی از پرکاربردترین شاخههای هوش مصنوعی است و نقش کلیدی در موتورهای جستجو، شبکههای اجتماعی، پشتیبانی آنلاین و ابزارهای هوشمند دارد.
✅️ در پستهای بعدی، اجزای اصلی NLP و کاربردهای واقعی آن را بهصورت جداگانه بررسی میکنیم.
📌 منابع:
🔘 IBM — Natural Language Processing
🔘 Stanford University — Speech and Language Processing
🔘 Google — Natural Language Understanding
#️⃣ #پردازش_زبان_طبیعی #هوش_مصنوعی #یادگیری_ماشین #فناوری
#NLP #ArtificialIntelligence #MachineLearning #AI #PyVision
🌐 @PyVision
پردازش زبان طبیعی یکی از زیرمجموعههای مهم هوش مصنوعی است که به سیستمها این توانایی را میدهد تا زبان انسان (متن و گفتار) را درک کنند، تحلیل کنند و پاسخ مناسب تولید کنند.
هدف NLP این است که ارتباط بین انسان و ماشین تا حد ممکن طبیعی و شبیه گفتوگوی انسانی شود. 💬🤖
به زبان ساده:
پردازش زبان طبیعی (NLP) به کامپیوتر یاد میدهد بفهمد ما چه میگوییم و چه مینویسیم.
🔹پردازش زبان طبیعی دقیقاً چه کارهایی انجام میدهد؟
● درک معنای متن
● تحلیل ساختار جملات
● تشخیص احساسات و نیت کاربران
● تولید متن یا پاسخ هوشمند
● پردازش گفتار انسان
🔹 نمونه کاربردهای پردازش زبان طبیعی
⚪️ تحلیل متن (Text Analysis)
● تحلیل احساسات (مثبت، منفی، خنثی)
● دستهبندی متون
● استخراج کلمات کلیدی
⚪️ پردازش گفتار (Speech Processing)
● تبدیل گفتار به متن (Speech to Text)
● تبدیل متن به گفتار (Text to Speech)
⚪️ سیستمهای مکالمهای
● چتباتها
● دستیارهای هوشمند
● پاسخگویی خودکار به کاربران
⚪️ ترجمه و تولید زبان
● ترجمه ماشینی
● خلاصهسازی متن
● تولید متن هوشمند
✨ پردازش زبان طبیعی یکی از پرکاربردترین شاخههای هوش مصنوعی است و نقش کلیدی در موتورهای جستجو، شبکههای اجتماعی، پشتیبانی آنلاین و ابزارهای هوشمند دارد.
✅️ در پستهای بعدی، اجزای اصلی NLP و کاربردهای واقعی آن را بهصورت جداگانه بررسی میکنیم.
📌 منابع:
🔘 IBM — Natural Language Processing
🔘 Stanford University — Speech and Language Processing
🔘 Google — Natural Language Understanding
#️⃣ #پردازش_زبان_طبیعی #هوش_مصنوعی #یادگیری_ماشین #فناوری
#NLP #ArtificialIntelligence #MachineLearning #AI #PyVision
🌐 @PyVision
🔥1👌1
PyVision | پایویژن
📘 یادگیری ماشین (Machine Learning) چیست؟ یادگیری ماشین یکی از مهمترین زیرمجموعههای هوش مصنوعی است که به سیستمها این توانایی را میدهد تا از دادهها یاد بگیرند و بدون برنامهنویسی صریح برای هر حالت، عملکرد خود را بهمرور بهبود دهند. به بیان ساده، بهجای…
📘 ۱۰ اصطلاح مهم در یادگیری ماشین
قسمت دوم
1️⃣1️⃣ Training
فرآیند آموزش مدل با استفاده از دادههای آموزشی
1️⃣2️⃣ Validation
بررسی عملکرد مدل در حین آموزش برای جلوگیری از خطا
1️⃣3️⃣ Overfitting
یادگیری بیشازحد داده آموزش و عملکرد ضعیف روی داده جدید
1️⃣4️⃣ Underfitting
ساده بودن بیشازحد مدل و ناتوانی در یادگیری الگوها
1️⃣5️⃣ Bias
خطای ناشی از سادهسازی بیشازحد مدل(سوگیری)
1️⃣6️⃣ Variance
حساسیت بیشازحد مدل به دادههای آموزشی
1️⃣7️⃣ Cross Validation
روش ارزیابی مدل با تقسیم داده به چند بخش
1️⃣8️⃣ Accuracy
درصد پیشبینیهای درست مدل
1️⃣9️⃣ Precision
نسبت پیشبینیهای درست مثبت به کل پیشبینیهای مثبت
2️⃣0️⃣ Recall
نسبت نمونههای مثبت شناساییشده به کل نمونههای مثبت واقعی
✨ این مفاهیم برای ارزیابی، تحلیل و بهبود مدلها ضروری هستند.
📌 منابع:
🔘 Google Machine Learning Glossary
🔘 Scikit-learn Documentation
🔘 Stanford CS229
#️⃣ #یادگیری_ماشین #مدل_سازی #تحلیل_داده #هوش_مصنوعی
#MachineLearning #MLMetrics #DataScience #AI #PyVision
🌐 @PyVision
قسمت دوم
1️⃣1️⃣ Training
فرآیند آموزش مدل با استفاده از دادههای آموزشی
1️⃣2️⃣ Validation
بررسی عملکرد مدل در حین آموزش برای جلوگیری از خطا
1️⃣3️⃣ Overfitting
یادگیری بیشازحد داده آموزش و عملکرد ضعیف روی داده جدید
1️⃣4️⃣ Underfitting
ساده بودن بیشازحد مدل و ناتوانی در یادگیری الگوها
1️⃣5️⃣ Bias
خطای ناشی از سادهسازی بیشازحد مدل(سوگیری)
1️⃣6️⃣ Variance
حساسیت بیشازحد مدل به دادههای آموزشی
1️⃣7️⃣ Cross Validation
روش ارزیابی مدل با تقسیم داده به چند بخش
1️⃣8️⃣ Accuracy
درصد پیشبینیهای درست مدل
1️⃣9️⃣ Precision
نسبت پیشبینیهای درست مثبت به کل پیشبینیهای مثبت
2️⃣0️⃣ Recall
نسبت نمونههای مثبت شناساییشده به کل نمونههای مثبت واقعی
✨ این مفاهیم برای ارزیابی، تحلیل و بهبود مدلها ضروری هستند.
📌 منابع:
🔘 Google Machine Learning Glossary
🔘 Scikit-learn Documentation
🔘 Stanford CS229
#️⃣ #یادگیری_ماشین #مدل_سازی #تحلیل_داده #هوش_مصنوعی
#MachineLearning #MLMetrics #DataScience #AI #PyVision
🌐 @PyVision
🔥1
PyVision | پایویژن
🔟 ۱۰ فناوری تحولآفرین ۲۰۲۶ منتخب MIT Technology Review؛ نگاهی به فناوریهایی که مسیر آیندهی هوش مصنوعی و جهان فناوری را شکل میدهند. 🌐 @PyVision
🔟 ۱۰ فناوری تحولآفرین سال ۲۰۲۶
به انتخاب MIT Technology Review
مجله MIT Technology Review در گزارش سالانهی خود، فهرستی از فناوریهایی را منتشر کرده که بهگفتهی این رسانه، بیشترین پتانسیل را برای تغییر مسیر علم، صنعت و زندگی انسان در سالهای پیشرو دارند.
در این پست، نگاهی کوتاه به ۵ مورد از مهمترین فناوریهای تحولآفرین ۲۰۲۶ میاندازیم 👇🏽
🔹 ۱. Hyperscale AI Data Centers
مراکز دادهی فوقمقیاس که برای آموزش و اجرای مدلهای عظیم هوش مصنوعی طراحی شدهاند؛
زیرساخت اصلی رشد LLMها و AI در مقیاس جهانی.
🔹 ۲. Next-Generation Nuclear Power
نسل جدید نیروگاههای هستهای با طراحی ایمنتر، کوچکتر و مقرونبهصرفهتر؛
پاسخی جدی به بحران انرژی و نیاز روزافزون مراکز دادهی AI.
🔹 ۳. Embryo Scoring
فناوریهای مبتنی بر داده و الگوریتم برای ارزیابی جنینها در درمانهای ناباروری؛
ترکیبی از زیستفناوری، داده و تصمیمسازی هوشمند.
🔹 ۴. AI Companions
همراههای هوشمند مبتنی بر AI که فراتر از چتباتها عمل میکنند؛
از پشتیبانی عاطفی تا کمک در تصمیمگیریهای روزمره.
🔹 ۵. Commercial Space Stations
ایستگاههای فضایی تجاری که راه را برای تحقیقات علمی، صنعت و حتی گردشگری فضایی باز میکنند.
💎 چرا این فهرست مهم است؟
این فناوریها فقط «ایده» نیستند؛
بلکه نشانههایی از جهتی هستند که آیندهی هوش مصنوعی، انرژی، سلامت و فضا به آن سمت حرکت میکند.
✅️ در پستهای بعدی، سایر فناوریهای این فهرست را هم جداگانه بررسی خواهیم کرد.
📌 لینک خبر:
🔘 MIT Technology Review
#️⃣ #هوش_مصنوعی #فناوری #آینده_فناوری #تحول_دیجیتال
#ArtificialIntelligence #AI #EmergingTechnologies #BreakthroughTechnologies #MITTechReview #MIT #PyVision
🌐 @PyVision
به انتخاب MIT Technology Review
مجله MIT Technology Review در گزارش سالانهی خود، فهرستی از فناوریهایی را منتشر کرده که بهگفتهی این رسانه، بیشترین پتانسیل را برای تغییر مسیر علم، صنعت و زندگی انسان در سالهای پیشرو دارند.
در این پست، نگاهی کوتاه به ۵ مورد از مهمترین فناوریهای تحولآفرین ۲۰۲۶ میاندازیم 👇🏽
🔹 ۱. Hyperscale AI Data Centers
مراکز دادهی فوقمقیاس که برای آموزش و اجرای مدلهای عظیم هوش مصنوعی طراحی شدهاند؛
زیرساخت اصلی رشد LLMها و AI در مقیاس جهانی.
🔹 ۲. Next-Generation Nuclear Power
نسل جدید نیروگاههای هستهای با طراحی ایمنتر، کوچکتر و مقرونبهصرفهتر؛
پاسخی جدی به بحران انرژی و نیاز روزافزون مراکز دادهی AI.
🔹 ۳. Embryo Scoring
فناوریهای مبتنی بر داده و الگوریتم برای ارزیابی جنینها در درمانهای ناباروری؛
ترکیبی از زیستفناوری، داده و تصمیمسازی هوشمند.
🔹 ۴. AI Companions
همراههای هوشمند مبتنی بر AI که فراتر از چتباتها عمل میکنند؛
از پشتیبانی عاطفی تا کمک در تصمیمگیریهای روزمره.
🔹 ۵. Commercial Space Stations
ایستگاههای فضایی تجاری که راه را برای تحقیقات علمی، صنعت و حتی گردشگری فضایی باز میکنند.
💎 چرا این فهرست مهم است؟
این فناوریها فقط «ایده» نیستند؛
بلکه نشانههایی از جهتی هستند که آیندهی هوش مصنوعی، انرژی، سلامت و فضا به آن سمت حرکت میکند.
✅️ در پستهای بعدی، سایر فناوریهای این فهرست را هم جداگانه بررسی خواهیم کرد.
📌 لینک خبر:
🔘 MIT Technology Review
#️⃣ #هوش_مصنوعی #فناوری #آینده_فناوری #تحول_دیجیتال
#ArtificialIntelligence #AI #EmergingTechnologies #BreakthroughTechnologies #MITTechReview #MIT #PyVision
🌐 @PyVision
🔥1
PyVision | پایویژن
🤖 آیندهی بازار کار در عصر AI از نگاه سرمایهگذاران هوش مصنوعی در حال تغییر "ماهیت کار" است، نه صرفاً حذف شغلها. جزئیات این پیشبینی مهم و اینکه چرا ۲۰۲۶ نقطهی عطف محسوب میشود را در پست بعدی بخوانید. 👇🏽 🌐 @PyVision
🧠 سرمایهگذاران: تأثیر واقعی هوش مصنوعی بر نیروی کار از ۲۰۲۶ آغاز میشود.
بر اساس گزارشی از TechCrunch، گروهی از سرمایهگذاران و فعالان فناوری معتقدند که سال ۲۰۲۶ نقطهی عطفی برای تأثیر واقعی هوش مصنوعی بر بازار کار خواهد بود.
🔍 محور اصلی این پیشبینی چیست؟
بهگفتهی سرمایهگذاران:
🔹️هوش مصنوعی بیش از آنکه «شغلها را حذف کند»،
نوع کارها را تغییر میدهد
🔹️ نقشهای تکراری، اداری و قابلاتوماسیون
بیشترین تأثیر را خواهند گرفت
🔹️ تمرکز آینده روی:
🔹️ بهرهوری بالاتر
🔹️ تیمهای کوچکتر اما توانمندتر
🔹️ ترکیب انسان + AI در محیط کار است
🤖 چرا این موضوع حالا مهم شده؟
پیشرفت سریع:
🔹️ مدلهای زبانی بزرگ (LLM)
🔹️ ابزارهای خودکارسازی
🔹️دستیارهای هوش مصنوعی AI Agent
باعث شده شرکتها و استارتاپها بازطراحی ساختار نیروی انسانی را جدیتر از قبل دنبال کنند.
این گزارش نشان میدهد چالش اصلی آینده:
🔹️ «جایگزینی انسان با ماشین» نیست،
🔹️ بلکه تطبیق مهارتها با دنیای AIمحور است.
برای توسعهدهندگان، متخصصان داده و علاقهمندان AI:
🔹️ یادگیری ابزارهای جدید
🔹️ درک عمیقتر از AI
🔹️ و نقشآفرینی خلاقانه
بیش از هر زمان دیگری اهمیت پیدا میکند.
📌 لینک:
🔘 www.techrunch.com
#️⃣ #هوش_مصنوعی #آینده_کار #بازار_کار #فناوری
#ArtificialIntelligence #FutureOfWork #AIJobs #TechCrunch #Automation #PyVision
🌐 @PyVision
بر اساس گزارشی از TechCrunch، گروهی از سرمایهگذاران و فعالان فناوری معتقدند که سال ۲۰۲۶ نقطهی عطفی برای تأثیر واقعی هوش مصنوعی بر بازار کار خواهد بود.
🔍 محور اصلی این پیشبینی چیست؟
بهگفتهی سرمایهگذاران:
🔹️هوش مصنوعی بیش از آنکه «شغلها را حذف کند»،
نوع کارها را تغییر میدهد
🔹️ نقشهای تکراری، اداری و قابلاتوماسیون
بیشترین تأثیر را خواهند گرفت
🔹️ تمرکز آینده روی:
🔹️ بهرهوری بالاتر
🔹️ تیمهای کوچکتر اما توانمندتر
🔹️ ترکیب انسان + AI در محیط کار است
🤖 چرا این موضوع حالا مهم شده؟
پیشرفت سریع:
🔹️ مدلهای زبانی بزرگ (LLM)
🔹️ ابزارهای خودکارسازی
🔹️دستیارهای هوش مصنوعی AI Agent
باعث شده شرکتها و استارتاپها بازطراحی ساختار نیروی انسانی را جدیتر از قبل دنبال کنند.
این گزارش نشان میدهد چالش اصلی آینده:
🔹️ «جایگزینی انسان با ماشین» نیست،
🔹️ بلکه تطبیق مهارتها با دنیای AIمحور است.
برای توسعهدهندگان، متخصصان داده و علاقهمندان AI:
🔹️ یادگیری ابزارهای جدید
🔹️ درک عمیقتر از AI
🔹️ و نقشآفرینی خلاقانه
بیش از هر زمان دیگری اهمیت پیدا میکند.
📌 لینک:
🔘 www.techrunch.com
#️⃣ #هوش_مصنوعی #آینده_کار #بازار_کار #فناوری
#ArtificialIntelligence #FutureOfWork #AIJobs #TechCrunch #Automation #PyVision
🌐 @PyVision
👌1
PyVision | پایویژن
🤖 شرکت OpenAI از GPT-5.3-Codex رونمایی کرد. نسل جدید مدلهای کدنویسی هوش مصنوعی با تمرکز بر وظایف پیچیده و عاملمحور. جزئیات و نکات مهم را در پست بعدی بخوانید. 👇🏽 🌐 @PyVision
🤖 شرکت OpenAI نسخهی جدید GPT-5.3-Codex را معرفی کرد
شرکت OpenAI از نسخهی پیشرفتهتری از ابزار هوش مصنوعی خود برای توسعهدهندگان رونمایی کرد: GPT-5.3-Codex — قویترین و پیشرفتهترین مدل کدنویسی هوش مصنوعی تا به امروز.
🔹 این مدل در چهار بنچمارک مهم از جمله SWE-Bench Pro و Terminal-Bench به بهترین عملکرد صنعت دست یافته است.
🔹چت جیپیتی کدکس GPT-5.3-Codex تنها کد نمینویسد، بلکه میتواند وظایف طولانی، پیچیده و چندمرحلهای را با ترکیب استدلال حرفهای و اجرای ابزارها انجام دهد.
🔹 نکتهی جذاب این است که نسخههای اولیهی خودش در توسعهاش نقش داشتهاند و به رفع اشکال و بهبود عملکرد کمک کردهاند، اتفاقی بیسابقه در تاریخ توسعه مدلها!
🔹 این مدل اکنون برای کاربران پولی در تمام محیطهای Codex (وب، CLI، IDE) دردسترس است و سطح جدیدی از همکاری هوش مصنوعی و کدنویسی را فراهم میکند.
🚀 سرعت بالاتر،
🔧 کدنویسی بهتر،
📚 توانایی اجرای پروژههای بزرگتر
🥇همه در یک مدل!
📌 منبع خبر:
🔘 openai.com
#️⃣ #هوش_مصنوعی #کدنویسی
#AI #GPT53 #OpenAI #Codex #PyVision
#ArtificialIntelligence #AIProgramming #DeveloperTools #TechNews
🌐 @PyVision
شرکت OpenAI از نسخهی پیشرفتهتری از ابزار هوش مصنوعی خود برای توسعهدهندگان رونمایی کرد: GPT-5.3-Codex — قویترین و پیشرفتهترین مدل کدنویسی هوش مصنوعی تا به امروز.
🔹 این مدل در چهار بنچمارک مهم از جمله SWE-Bench Pro و Terminal-Bench به بهترین عملکرد صنعت دست یافته است.
🔹چت جیپیتی کدکس GPT-5.3-Codex تنها کد نمینویسد، بلکه میتواند وظایف طولانی، پیچیده و چندمرحلهای را با ترکیب استدلال حرفهای و اجرای ابزارها انجام دهد.
🔹 نکتهی جذاب این است که نسخههای اولیهی خودش در توسعهاش نقش داشتهاند و به رفع اشکال و بهبود عملکرد کمک کردهاند، اتفاقی بیسابقه در تاریخ توسعه مدلها!
🔹 این مدل اکنون برای کاربران پولی در تمام محیطهای Codex (وب، CLI، IDE) دردسترس است و سطح جدیدی از همکاری هوش مصنوعی و کدنویسی را فراهم میکند.
🚀 سرعت بالاتر،
🔧 کدنویسی بهتر،
📚 توانایی اجرای پروژههای بزرگتر
🥇همه در یک مدل!
📌 منبع خبر:
🔘 openai.com
#️⃣ #هوش_مصنوعی #کدنویسی
#AI #GPT53 #OpenAI #Codex #PyVision
#ArtificialIntelligence #AIProgramming #DeveloperTools #TechNews
🌐 @PyVision
🔥1