PyVision | پای‌ویژن
68 subscribers
63 photos
41 files
113 links
آموزش زبان برنامه‌نویسی Python 🐍
از مفاهیم پایه تا مباحث پیشرفته و کاربردی
ورود به دنیای هوش مصنوعی💻
یاد بگیریم،
تمرین کنیم،
حرفه‌ای شویم.

Step by Step Python Programming Tutorial
From Basics to Advanced Projects & AI

ارتباط با ادمین:
🌐 @Its_poryaa
Download Telegram
📚 👆🏽معرفی کتاب:
قسمت شانزدهم

Probabilistic Machine Learning an introduction

نویسنده:
Kevin Murphy

📊 سطح: پیشرفته
🗣 زبان: انگلیسی

💎 ویژگی‌های منحصر به فرد کتاب:
● نوشته شده توسط Kevin Murphy از محققان برجسته حوزه ML
● ارائه چهارچوب یکپارچه احتمالاتی برای یادگیری ماشین
● ترکیب تئوری و عمل با پیاده‌سازی‌های عملی

آنچه این کتاب را خاص می‌کند:
● پوشش مباحث پیشرفته در دو جلد کامل:
■ جلد اول: مبانی و مفاهیم پایه
■ جلد دوم: مدل‌های پیشرفته و کاربردها
● تمرکز بر رویکرد بیزی و استنتاج آماری
● ارائه کدهای عملی و مثال‌های کاربردی

📖 سرفصل‌های کلیدی:
● مبانی احتمال و آمار برای Machine Learning
● مدل‌های تولیدی و تشخیصی
● استنتاج بیزی (Bayesian inference) و روش‌های MCMC
● یادگیری عمیق احتمالاتی
● مدل‌های ترتیبی و سری‌زمانی

📌 مطالعه معرفی کامل کتاب:

🔘 MIT Press


#️⃣ #پایتون #یادگیری_ماشین_احتمالاتی #کتاب_مرجع #هوش_مصنوعی #آمار_بیزی #کتاب_شانزدهم #پای_ویژن
#Python #ProbabilisticML #MachineLearning #AI #BayesianStatistics #PyVision

🌐 @PyVision
2🤩1
🎨 کتابخانه Plotly، تعاملی‌کردن مصورسازی داده‌ها

اگر به دنبال نمودارهای زیبا، تعاملی و قابل انتشار در وب هستیم، کتابخانه Plotly یکی از بهترین گزینه‌هاست. این کتابخانه به ما اجازه می‌دهد نمودارهای پویا بسازیم؛ نمودارهایی که با حرکت ماوس، زوم و کلیک می‌توانند اطلاعات بیشتری نمایش دهند.

🔹 ماهیت آن چیست؟
کتابخانه Plotly یک کتابخانهٔ قدرتمند برای ساخت نمودارهای تعاملی در پایتون است که برای تحلیل داده، داشبوردسازی و ارائه‌های حرفه‌ای استفاده می‌شود.

🔹 مثال ساده: نمودار خطی (Line Plot)

import plotly.express as px
import pandas as pd

df = pd.DataFrame({
"x": [1, 2, 3, 4, 5],
"y": [10, 14, 12, 22, 28]
})

fig = px.line(df, x="x", y="y", title="Simple Line Plot")
fig.show()

🔹 چرا Plotly محبوب است؟
به‌خاطر سازگاری عالی با Jupyter Notebook، امکان ذخیرهٔ نمودارها در قالب HTML و تنوع بالای نمودارها (۳بعدی، نقشه، هیستوگرام و …)

📌 منبع:
🔘 Plotly documentation

#️⃣ #پایتون #مصورسازی_داده #تحلیل_داده #پای_ویژن
#python #plotly #datavisualization #datascience #machinelearning #PyVision

🌐 @PyVision
🔥2🤩1
Sheldon Axler - Linear Algebra Done Right (2024, Springer).pdf
5.7 MB
📚 معرفی کتاب:
قسمت هفدهم
Linear Algebra Done Right

نویسنده:
Sheldon Axler

🗣 زبان: انگلیسی
📊 سطح: متوسط تا پیشرفته

💎 ویژگی‌های منحصر به فرد کتاب:
● تأکید بر درک مفهومی به جای محاسبات مکانیکی
● حذف determinants در نیمه اول کتاب برای تمرکز بر ساختارهای جبری
● منبع درسی در دانشگاه‌های معتبر جهان

آنچه این کتاب را خاص می‌کند:
● آموزش جبر خطی از طریق فضاهای برداری و تبدیل‌های خطی
● روش آموزشی منحصربه‌فرد با تمرکز بر اثبات و درک عمیق
● ارتباط مستقیم با مفاهیم پیشرفته یادگیری ماشین و هوش مصنوعی

📖 سرفصل‌های کلیدی:
● فضاهای برداری و زیرفضاها
● تبدیل‌های خطی و ماتریس‌ها
● مقادیر ویژه و بردارهای ویژه
● فرم‌های کانونی
● فضاهای ضرب داخلی

● این کتاب پایه‌های مفهومی لازم برای درک الگوریتم‌های پیشرفته‌ای مانند PCA، SVD و شبکه‌های عصبی را فراهم می‌کند.

📌 منبع:
🔘 Springer


#️⃣ #پایتون #جبر_خطی #ریاضیات #هوش_مصنوعی #یادگیری_ماشین #کتاب_هفدهم #پای_ویژن
#Python #LinearAlgebra #Mathematics #AI #MachineLearning #PyVision

🌐 @PyVision
🤩3
PyVision | پای‌ویژن
اگر می‌خواهید با یکی از مهم‌ترین کتابخانه‌های یادگیری ماشین (Machine Learning) آشنا شوید، پست بعدی را از دست ندهید. ✅️ 🌐 @PyVision
📘 معرفی کتابخانه‌ی Scikit-Learn، ستون اصلی یادگیری ماشین در پایتون

اگر بخواهیم وارد دنیای یادگیری ماشین (Machine Learning) شویم، یکی از اولین کتابخانه‌هایی که باید با آن آشنا شویم، Scikit-Learn است؛ ابزاری قدرتمند برای ساخت، آموزش و ارزیابی مدل‌های مختلف.

🔹 ماهیت آن چیست؟
یک کتابخانه‌ی متن‌باز پایتونی برای پیاده‌سازی الگوریتم‌های یادگیری ماشین که روی کتابخانه‌های NumPy، SciPy و Matplotlib ساخته شده است. این ابزار به ما کمک می‌کند تا بدون پیچیدگی‌های ریاضی، مدل‌ها را پیاده‌سازی و تست کنیم.

🔹 چه قابلیت‌هایی دارد؟
✔️ الگوریتم‌های طبقه‌بندی (Classification) مثل SVM، KNN، Decision Tree
✔️ الگوریتم‌های رگرسیون (Regression) مثل Linear Regression و SVR
✔️ الگوریتم‌های خوشه‌بندی (Clustering) مثل K-Means و DBSCAN
✔️ ابزارهای پیش‌پردازش داده‌ها (Scaling, Encoding, Normalization)
✔️ ابزارهای انتخاب ویژگی (Feature Selection)
✔️ ابزارهای ارزیابی مدل‌ها (Confusion Matrix، Cross-Validation و…)

🔹 یک مثال ساده: آموزش یک مدل طبقه‌بندی

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# بارگذاری دیتاست
X, y = load_iris(return_X_y=True)

# تقسیم داده‌ها
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# ایجاد و آموزش مدل
model = RandomForestClassifier()
model.fit(X_train, y_train)

# دقت مدل
print(model.score(X_test, y_test))

🔹 کاربردها:
این کتابخانه کاربرد های گسترده‌ای دارد از جمله برای ساخت مدل‌های پیش‌بینی، طبقه‌بندی، تحلیل داده، هوش مصنوعی، و آموزش مفاهیم پایه تا متوسط یادگیری ماشین.

📌 منبع:
🔘 Scikit-Learn

#️⃣ #پایتون #یادگیری_ماشین #آموزش_پایتون #کتابخانه_پایتون #تحلیل_داده #پای_ویژن
#Python #ScikitLearn #MachineLearning #PyVision

🌐 @PyVision
👌5
Introduction_to_Probability_for_Data_Science_2021,_Michigan_Publishing.pdf
18.4 MB
📚 معرفی کتاب:
قسمت هجدهم

Introduction to Probability for Data Science

نویسنده:
Stanley H. Chan

📊 سطح: متوسط
🗣 زبان‌: انگلیسی

💎 ویژگی‌های منحصر به فرد کتاب:
● آموزش احتمال با رویکرد علمِ داده
● تاکید بر کاربردهای عملی در تحلیل داده و یادگیری ماشین
● ارائه مثال‌های واقعی از پروژه‌های داده‌کاوی

آنچه این کتاب را خاص می‌کند:
● پیوند مستقیم تئوریِ احتمال با مسائل علم داده
● آموزش از مبانی پایه تا پیشرفته با زبانی قابل فهم
● دسترسی رایگان از طریق انتشارات دانشگاه میشیگان

📖 سرفصل‌های کلیدی:
● اصول پایه احتمال و توزیع‌ها
● متغیرهای تصادفی و انتظار ریاضی
● قوانین حدی و تقریب‌ها
● کاربردهای احتمال در یادگیری ماشین
● روش‌های مونت کارلو و شبیه‌سازی

📎 این کتاب پایه‌های دانش احتمال مورد نیاز برای درک الگوریتم‌های یادگیری ماشین و علم داده را فراهم می‌کند.

📌 منبع:
🔘 Michigan Publishing


#️⃣ #احتمال #علم_داده #یادگیری_پایتون #هوش_مصنوعی #کتاب_هجدهم #پای_ویژن
#Probability #DataScience #AI #MachineLearning #PyVision

🌐 @PyVision
👌3
📘اصطلاحات پرکاربرد دنیای یادگیری ماشین (Machine Learning)
قسمت اول

1️⃣ Machine Learning (یادگیری ماشین)
شاخه‌ای از هوش مصنوعی که به سیستم‌ها این امکان را می‌دهد تا از داده‌ها یاد بگیرند و بدون نیاز به برنامه‌نویسی دقیق تصمیم بگیرند.

2️⃣ Dataset (دیتاست)
مجموعه‌ای از داده‌ها که برای آموزش، ارزیابی یا آزمایش مدل استفاده می‌شود.

3️⃣ Feature (ویژگی)
ویژگی یا خصوصیت داده‌ها که به عنوان ورودی به مدل داده می‌شود.

4️⃣ Label / Target (برچسب / هدف)
خروجی یا پاسخ صحیح هر نمونه داده که مدل باید آن را پیش‌بینی کند.

5️⃣ Supervised Learning (یادگیری نظارت‌شده)
یادگیری با داده‌های برچسب‌خورده برای پیش‌بینی خروجی. شامل مسائل طبقه‌بندی و رگرسیون است.

6️⃣ Classification (طبقه‌بندی)
پیش‌بینی یک دسته یا کلاس برای داده‌ها، مانند تشخیص اسپم یا غیر اسپم.

7️⃣ Regression (رگرسیون)
پیش‌بینی مقادیر پیوسته، مانند پیش‌بینی قیمت یک خانه بر اساس ویژگی‌های آن.

8️⃣ Overfitting (بیش‌برازش)
وقتی مدل خیلی به داده‌های آموزش تطبیق می‌یابد و عملکرد ضعیفی در داده‌های جدید دارد.

9️⃣ Accuracy (دقت)
نسبت پیش‌بینی‌های صحیح به کل نمونه‌ها. یکی از معیارهای ارزیابی مدل.

🔟 Cross-Validation
روش ارزیابی مدل که در آن داده‌ها به چند بخش تقسیم می‌شوند تا از آن‌ها برای آموزش و ارزیابی مدل استفاده شود.


📌 منبع:
🔘 Scikit-Learn

#️⃣ #یادگیری_ماشین #هوش_مصنوعی #علم_داده #آموزش_ماشین_لرنینگ
#MachineLearning #ArtificialIntelligence #DataScience #MLBasics #PyVision

🌐 @PyVision
🤩2
PyVision | پای‌ویژن
اگر می‌خواهید با یکی از مهم‌ترین کتابخانه‌های یادگیری ماشین (Machine Learning) آشنا شوید، پست بعدی را از دست ندهید. ✅️ 🌐 @PyVision
📘معرفی ویژگی‌ها و قابلیت‌های Scikit-Learn
بخش اول: Supervised Learning


در مسیر آشنایی با کتابخانه‌ی Scikit-Learn، یکی از مهم‌ترین و پرکاربردترین بخش‌ها،
یادگیری نظارت‌شده (Supervised Learning) است؛
جایی که مدل‌ها با داده‌های برچسب‌خورده آموزش می‌بینند و یاد می‌گیرند چگونه پیش‌بینی کنند.

🔹️ این بخش مجموعه‌ای از الگوریتم‌ها و ابزارها را در اختیار ما می‌گذارد برای:

✔️ طبقه‌بندی (Classification)
برای پاسخ به سؤال‌هایی مثل:
«این داده متعلق به کدام دسته است؟»

✔️ رگرسیون (Regression)
برای پیش‌بینی مقادیر عددی مانند قیمت، زمان، میزان و…

🔹 چرا Scikit-Learn در این حوزه محبوب است؟
چون:

■ الگوریتم‌ها با یک الگوی ساده و یکسان (fit و predict) کار می‌کنند
■ پیاده‌سازی‌ها استاندارد و قابل مقایسه هستند
■ یادگیری مفاهیم پایه تا سطح کاربردی را ساده می‌کند

🔹 کاربردهای رایج Supervised Learning
■ پیش‌بینی روندها (بسان پیش‌بینی قیمت‌ها، پیش‌بینی روندهای آماری)
■ تحلیل رفتار کاربران
■ طبقه‌بندی داده‌های متنی و عددی و...


📌 منبع:
🔘 Scikit-Learn

#️⃣ #یادگیری_ماشین #هوش_مصنوعی #آموزش_پایتون #علم_داده #یادگیری_نظارت_شده #پای_ویژن
#SupervisedLearning
#MachineLearning #ArtificialIntelligence #ScikitLearn #DataScience #PyVision


🌐 @PyVision
👌3
Mathematical_Engineering_of_Deep_Learning_Benoit_Liquet,_Sarat_Moka.pdf
30.3 MB
📚 معرفی کتاب:
قسمت نوزدهم

The Mathematical Engineering of Deep Learning

نویسندگان:

Benoit Liquet, Sarat Moka, Yoni Nazarathy

📊 سطح: پیشرفته
🗣 زبان‌: انگلیسی

💎 ویژگی‌های منحصر به فرد کتاب:
● رویکرد مهندسی ریاضی به جای صرفاً نظری
● ترکیب مباحث پیشرفته ریاضی با پیاده‌سازی عملی
● منبع اختصاصی برای درک ریاضیات شبکه‌های عصبی عمیق (DNN)

آنچه این کتاب را خاص می‌کند:
● آموزش ریاضیات پیشرفته به زبانی مهندسی و کاربردی
● تمرکز بر شبکه‌های عصبی عمیق و معماری‌های مدرن
● ارائه کدهای عملی و مثال‌های پیاده‌سازی شده

📖 سرفصل‌های کلیدی:
● مبانی ریاضی شبکه‌های عصبی
● بهینه‌سازی درفضای‌های ابعاد بالا
● نظریه تقریب (Approximation theory) و عمق شبکه‌ها
● یادگیری عمیق احتمالاتی
● ریاضیات پشتِ مکانیزیم توجه (Attention) و ترنسفورمرها

▫️این کتاب برای کسانی که می‌خواهند پایه‌های ریاضی قوی برای کاربا شبکه‌های عصبی عمیق بسازند، ایده‌آل است.

📌 منبع:
🔘 deeplearningmath.org

#️⃣ #ریاضیات_یادگیری_عمیق #مهندسی_ریاضی #هوش_مصنوعی #کتاب_تخصصی #کتاب_نوزدهم
#DeepLearningMath #AI #MachineLearning #NeuralNetworks #PyVision

🌐 @PyVision
🔥3
📘 هوش مصنوعی (Artificial Intelligence) چیست؟

هوش مصنوعی به زبان ساده یعنی طراحی سیستم‌ها و برنامه‌هایی که می‌توانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛
مثل یادگیری از تجربه، تحلیل داده‌ها، تصمیم‌گیری و حل مسئله.
این سیستم‌ها به‌جای پیروی از دستورهای کاملاً ثابت، با داده‌ها آموزش می‌بینند و به‌مرور دقیق‌تر می‌شوند. 🤖

🔹 زیرمجموعه‌های اصلی هوش مصنوعی

1️⃣ یادگیری ماشین (Machine Learning)
در این روش، ماشین با بررسی داده‌ها الگوها را یاد می‌گیرد و بدون برنامه‌نویسی مستقیم، عملکرد خود را بهبود می‌دهد.
⚪️ مثال: سیستم‌های پیشنهاددهنده فیلم، موسیقی یا کالا

2️⃣ یادگیری عمیق (Deep Learning)
شاخه‌ای پیشرفته از یادگیری ماشین که از شبکه‌های عصبی چندلایه الهام‌گرفته از مغز انسان استفاده می‌کند.
⚪️ مثال: تشخیص چهره، تشخیص گفتار و تحلیل تصاویر پزشکی

3️⃣ پردازش زبان طبیعی (NLP)
این حوزه به ماشین کمک می‌کند زبان انسان را بفهمد، پردازش کند و پاسخ مناسب تولید کند.
⚪️ مثال: چت‌بات‌ها، ترجمه ماشینی و خلاصه‌سازی متن

4️⃣ بینایی ماشین (Computer Vision)
توانایی تحلیل و درک تصاویر و ویدئوها توسط سیستم‌های کامپیوتری.
⚪️ مثال: خودروهای خودران و سیستم‌های نظارت تصویری

5️⃣ سیستم‌های خبره (Expert Systems)
سیستم‌هایی که دانش و تجربه‌ی یک متخصص انسانی را شبیه‌سازی می‌کنند.
⚪️ مثال: سیستم‌های تشخیص بیماری یا تحلیل ریسک


✅️ در پست‌های بعدی، هر یک از این زیرشاخه‌ها را به‌صورت جداگانه و ساده بررسی می‌کنیم و با کاربردهای آن‌ها بیشتر آشنا می‌شویم.

📌 منابع:
🔘 www.ibm.com
🔘developers.google.com
🔘web.stanford.edu

#️⃣ #هوش_مصنوعی #یادگیری_ماشین #فناوری #تحلیل_داده #برنامه_نویسی
#ArtificialIntelligence #MachineLearning #DeepLearning #AI #DataScience #PyVision

🌐 @PyVision
3👌1
PyVision | پای‌ویژن
📘 هوش مصنوعی (Artificial Intelligence) چیست؟ هوش مصنوعی به زبان ساده یعنی طراحی سیستم‌ها و برنامه‌هایی که می‌توانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛ مثل یادگیری از تجربه، تحلیل داده‌ها، تصمیم‌گیری و حل مسئله. این سیستم‌ها به‌جای پیروی از دستورهای…
📘 یادگیری ماشین (Machine Learning) چیست؟

یادگیری ماشین یکی از مهم‌ترین زیرمجموعه‌های هوش مصنوعی است که به سیستم‌ها این توانایی را می‌دهد تا از داده‌ها یاد بگیرند و بدون برنامه‌نویسی صریح برای هر حالت، عملکرد خود را به‌مرور بهبود دهند.
به بیان ساده، به‌جای اینکه همه‌چیز را مرحله‌به‌مرحله به ماشین بگوییم، داده در اختیارش می‌گذاریم تا الگوها را خودش کشف کند. 🤖📊

🔹 انواع اصلی یادگیری ماشین

1️⃣ یادگیری نظارت‌شده (Supervised Learning)
مدل با داده‌های برچسب‌دار آموزش می‌بیند؛ یعنی جواب درست از قبل مشخص است.
⚪️ مثال: تشخیص ایمیل اسپم، پیش‌بینی قیمت خانه

2️⃣ یادگیری بدون نظارت (Unsupervised Learning)
مدل بدون دانستن جواب درست، الگوها و ساختارهای پنهان داده را پیدا می‌کند.
⚪️ مثال: خوشه‌بندی کاربران، تحلیل رفتار مشتریان

3️⃣ یادگیری تقویتی (Reinforcement Learning)
سیستم با آزمون‌وخطا و دریافت پاداش یا جریمه یاد می‌گیرد بهترین تصمیم را بگیرد.
⚪️ مثال: بازی‌های هوشمند، ربات‌ها، خودروهای خودران

یادگیری ماشین پایه‌ی بسیاری از فناوری‌های امروزی است؛
از سیستم‌های پیشنهاددهنده گرفته تا تشخیص تصویر، گفتار و تحلیل داده‌های عظیم.

✅️ در پست‌های بعدی، هرکدام از این انواع را جداگانه و همراه با مثال‌های واقعی بررسی می‌کنیم.

📌 منابع:
🔘 IBM
🔘 Google
🔘 Stanford University

#️⃣ #یادگیری_ماشین #هوش_مصنوعی #علم_داده #برنامه_نویسی #پای_ویژن
#MachineLearning #ArtificialIntelligence #DataScience #AI

🌐 @PyVision
👌3