Machine learning books and papers
23.3K subscribers
987 photos
55 videos
929 files
1.33K links
Download Telegram
DEEP LEARNING INTERVIEWS REAL-WORLD DEEP LEARNING INTERVIEW PROBLEMS & SOLUTIONS
#book #DL

book

@Machine_learn

link: https://arxiv.org/pdf/2201.00650.pdf
deep-learning-with-python-meap-2nd-ed.pdf
8.8 MB
Deep Learning with Python
Second Edition Version 4
#book #DL #python
@Machine_learn
โค8
๐Ÿ‘โ€๐Ÿ—จ CVNets: A library for training computer vision networks

Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.

Github: https://github.com/apple/ml-cvnets

Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models

Paper: https://arxiv.org/abs/2206.02680v1

Dataset: https://paperswithcode.com/dataset/coco

@Machine_learn
โค4๐Ÿ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
ุนูŠุฏ ุงู„ุถุญูŠ ู…ุจุงุฑูƒ
ูƒู„ ุนุงู… ูˆ ุงู†ุชู… ุจุฎูŠุฑ

@Machine_learn
โค12
02213cb4-b391-4516-adcd-57243ced8eed.pdf
1.7 MB
PySpark & Spark SQL
Spark SQL is Apache Spark's #Cheat_Sheet @Machine_learn
โค4
jep.28.2.3.pdf
1.6 MB
Big Data: New Tricks for Econometrics #Book @Machine_learn
โค6
murenei_natural-language-processing-with-python-and-nltk.pdf
54.2 KB
Natural Language Processing with Python & nltk Cheat Sheet #Cheat_Sheet @Machine_learn
โค5
This media is not supported in your browser
VIEW IN TELEGRAM
Temperature change (1880-2021) ๐Ÿคฏ
@Machine_learn
โค11๐Ÿ‘1
Can CNNs Be More Robust Than Transformers?

CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.

Github: https://github.com/ucsc-vlaa/robustcnn

Paper: https://arxiv.org/abs/2206.03452v1

Dataset: https://paperswithcode.com/dataset/imagenet-r

@Machine_learn
๐Ÿ‘1
FULLTEXT01.pdf
1.1 MB
Application of Machine Learning to Financial Trading
MICHAL HOREMUZ #book
@Machine_learn
โค8
โœ”๏ธ Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case

This library implements some of the most common (Variational) Autoencoder models.

Github: https://github.com/clementchadebec/benchmark_VAE

Paper: https://arxiv.org/abs/2206.08309v1

Dataset: https://paperswithcode.com/dataset/celeba

@Machine_learn
๐Ÿ‘1