BioPars: A Pretrained Biomedical Large Language Model for Persian Biomedical Text Mining
https://arxiv.org/abs/2506.21567
یکی از کارهایی که دوستان زحمت کشیدن.
این کار حدود ۵ ماه طول کشید .
@Machine_learn
https://arxiv.org/abs/2506.21567
یکی از کارهایی که دوستان زحمت کشیدن.
این کار حدود ۵ ماه طول کشید .
@Machine_learn
arXiv.org
BioPars: A Pretrained Biomedical Large Language Model for Persian...
Large Language Models (LLMs) have recently gained attention in the life sciences due to their capacity to model, extract, and apply complex biological information. Beyond their classical use as...
❤1
Forwarded from Quera
از ریاضیات تا ماشینلرنینگ و دیپلرنینگ...
🚩 بوتکمپ تخصصی هوشمصنوعی
🟢 دوره فشرده آمادهسازی برای ورود به بازارکار
✨ آموزش تخصصی، کاربردی و تجربه نزدیک به صنعت!
✔️ اساتید مجرب و فعال در حوزه هوشمصنوعی
✔️ کار گروهی و شبکهسازی
✔️ تمرین و پروژه هدفمند
✔️ منتورینگ اختصاصی
❗️ ظرفیت محدود
💳 پرداخت قسطی
➡️ فرم ثبتنام:
🔗 https://quera.org/r/qrlve
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
با عرض سلام مي خواهيم مقاله اي براي ACM transaction on Ai ارائه بديم موضوع اصلي حول
Recurrent Neural Network Basic defiences
مي باشد.
نيازمند نفر 4ام هستيم كه بتونن در نگارش و كارها و هزينه كار كمكمون كند. هزينه نفرات براي اين كار كه ١٨ بنچ مارك داره از قرار زير:
1: 700$(❌)
2: 500$❌
3: 400$❌
4: 350$ ✅
دوستاني كه مايل هستن مي تونن به ايدي بنده پيام بدن.
@Raminmousa
Recurrent Neural Network Basic defiences
مي باشد.
نيازمند نفر 4ام هستيم كه بتونن در نگارش و كارها و هزينه كار كمكمون كند. هزينه نفرات براي اين كار كه ١٨ بنچ مارك داره از قرار زير:
1: 700$(❌)
2: 500$❌
3: 400$❌
4: 350$ ✅
دوستاني كه مايل هستن مي تونن به ايدي بنده پيام بدن.
@Raminmousa
❤2
Article Title:
Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
PDF Download Link:
https://arxiv.org/pdf/2504.19254v2.pdf
GitHub:
• https://github.com/cvs-health/uqlm
Datasets:
• GSM8K
• SVAMP
• PopQA
==================================
@Machine_learn
Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
PDF Download Link:
https://arxiv.org/pdf/2504.19254v2.pdf
GitHub:
• https://github.com/cvs-health/uqlm
Datasets:
• GSM8K
• SVAMP
• PopQA
==================================
@Machine_learn
❤2
SWE-bench Goes Live
🖥 Github: https://github.com/microsoft/swe-bench-live
📕 Paper: https://arxiv.org/abs/2505.23419v1
🔗 Tasks: https://paperswithcode.com/dataset/humaneval
For more data science resources:
@Machine_learn
🖥 Github: https://github.com/microsoft/swe-bench-live
📕 Paper: https://arxiv.org/abs/2505.23419v1
🔗 Tasks: https://paperswithcode.com/dataset/humaneval
For more data science resources:
@Machine_learn
❤1
Helpful Agent Meets Deceptive Judge: Understanding Vulnerabilities in Agentic Workflows
📄 Book
@Machine_learn
📄 Book
@Machine_learn
❤1
The Cybernetic Teammate: A Field Experiment on Generative AI Reshaping Teamwork and Expertise
tldr: Person with AI ~ Person who talks and works with teammates.
Source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5188231
@Machine_learn
tldr: Person with AI ~ Person who talks and works with teammates.
Source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5188231
@Machine_learn
❤1
Vine Copulas as Differentiable Computational Graphs
🖥 Github: https://github.com/TY-Cheng/torchvinecopulib
📕 Paper: https://arxiv.org/abs/2506.13318v1
🔗 Tasks: https://paperswithcode.com/task/scheduling
@Machine_learn
🖥 Github: https://github.com/TY-Cheng/torchvinecopulib
📕 Paper: https://arxiv.org/abs/2506.13318v1
🔗 Tasks: https://paperswithcode.com/task/scheduling
@Machine_learn
❤1
UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation
🖥 Github: https://github.com/tliby/unifork
📕 Paper: https://arxiv.org/abs/2506.17202v1
🔗 Dataset: https://paperswithcode.com/dataset/gqa
@Machine_learn
🖥 Github: https://github.com/tliby/unifork
📕 Paper: https://arxiv.org/abs/2506.17202v1
🔗 Dataset: https://paperswithcode.com/dataset/gqa
@Machine_learn
❤1
Forwarded from Papers
سلام دوستانی که مقالات مرتبط با یادگیری ماشین و یادگیری عمیق دارند و می خوان افرادی در مقالاتشون مشارکت کنند با رعایت برخی شرایط می تونن در کانالهای ما مقالاتشون رو ثبت کنن.
@Raminmousa
@Machine_learn
@paper4money
@Raminmousa
@Machine_learn
@paper4money
TCANet for motor imagery EEG classification
🖥 Github: https://github.com/tliby/unifork
📕 Paper: https://link.springer.com/article/10.1007/s11571-025-10275-5
🔗 Dataset: https://paperswithcode.com/task/brain-computer-interface
@Machine_learn
🖥 Github: https://github.com/tliby/unifork
📕 Paper: https://link.springer.com/article/10.1007/s11571-025-10275-5
🔗 Dataset: https://paperswithcode.com/task/brain-computer-interface
@Machine_learn
Forwarded from Papers
با عرض سلام نفرات ٢ تا ٤ قابل اضافه شدن به مقاله زير مي باشد.
Title:Probability latent for Recurrent Neural Networks Basic deficiencies
abstract:
Time series prediction analyzes patterns in past data to predict the future. Traditional machine learning algorithms, despite achieving impressive results, require manual feature selection. Automatic feature selection along with the addition of the time concept in deep recurrent networks has led to more suitable solutions. The selection of feature order in deep recurrent networks leads to the provision of different results due to the use of back-propagation. The problem of selecting feature order is an NP-complete problem. . ..... The proposed approach has an improvement of 0.49 over the reviewed approaches in some benchmarks.
Price:
2:500$
3:400$
4:250$
@Raminmousa
@Machine_learn
@Paper4money
Title:Probability latent for Recurrent Neural Networks Basic deficiencies
abstract:
Time series prediction analyzes patterns in past data to predict the future. Traditional machine learning algorithms, despite achieving impressive results, require manual feature selection. Automatic feature selection along with the addition of the time concept in deep recurrent networks has led to more suitable solutions. The selection of feature order in deep recurrent networks leads to the provision of different results due to the use of back-propagation. The problem of selecting feature order is an NP-complete problem. . ..... The proposed approach has an improvement of 0.49 over the reviewed approaches in some benchmarks.
Price:
2:500$
3:400$
4:250$
@Raminmousa
@Machine_learn
@Paper4money
❤1