Machine learning books and papers
23.3K subscribers
986 photos
55 videos
929 files
1.33K links
Download Telegram
Python Concurrency with asyncio Matthew Fowler.pdf
6.1 MB
Python Concurrency with asyncio Matthew Fowler
Matthew Fowler (2022)
#book #python 2022

@Machine_learn
5👍1
This media is not supported in your browser
VIEW IN TELEGRAM
When you are presenting a topic in the class and make eye contact with your friends😹😹😹
@Machine_learn
😍2👍1
Math-for-Programmers.pdf
27.7 MB
MEAP Edition
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn
😍6👍5
book.pdf
52.1 MB
Multimodal Deep Learning
#book #DL #2023
@Machine_learn
👍82
Boost Your Data Science Productivity.pdf
9.3 MB
30 Python Libraries to (Hugely) Boost Your Data Science Productivity
#Python
@Machine_learn
👍6
Build_a_Career_in_Data_Science_by_Emily_Robinson,_Jacqueline_Nolis.pdf
12.3 MB
Build a Career in Data Science
EMILY ROBINSON AND JACQUELINE NOLIS
#Data_Science
#Book
#ML
@Machine_learn
👍1
Data-Oriented Programming Reduce soft....pdf
7.1 MB
Data-Oriented Programming: Reduce software complexity (2022)
#Book
#Python
@Machine_learn
👍1
💬 GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.


⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

✅️ Paper: https://arxiv.org/abs/2301.07093

🖥 Github: https://github.com/gligen/GLIGEN

@Machine_learn
Apress.PyTorch.pdf
5.1 MB
PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models, 2nd Edition (2022)
#Pythorch #book #python

@Machin_learn
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Autoregressive approach for modeling dynamically deforming human bodies by Meta.


🖥 Github: github.com/facebookresearch/AutoAvatar

⭐️ Project: zqbai-jeremy.github.io/autoavatar

✅️ Paprer: arxiv.org/pdf/2203.13817.pdf

Dataset: https://amass.is.tue.mpg.de/index.html

⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4

@Machine_learn
👍41
🖥 Deep BCI SW ver. 1.0 is released.

🖥 Github: https://github.com/DeepBCI/Deep-BCI

Paper: https://arxiv.org/abs/2301.08448v1

➡️ Project: https://deepbci.korea.ac.kr/

@Machine_learn
Pandas.Basics.pdf
9.8 MB
Pandas Basics
Oswald Campesato
#book #pandas #python
@Machne_learn
7
PACO: Parts and Attributes of Common Objects

🖥 Github
⭐️ Paper
Project

@Machine_learn
2👍2
PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development



🖥 Github: https://github.com/primeqa/primeqa

🖥 Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks

✅️ Paper: https://arxiv.org/abs/2301.09715v2

⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions

✔️ Docs: https://primeqa.github.io/primeqa/installation.html

@Machine_learn
👍1🔥1