Invertible Neural Networks for Graph Prediction
Github: https://github.com/hamrel-cxu/invertible-graph-neural-network-ignn
Paper: https://arxiv.org/abs/2206.01163v1
@Machine_learn
  Github: https://github.com/hamrel-cxu/invertible-graph-neural-network-ignn
Paper: https://arxiv.org/abs/2206.01163v1
@Machine_learn
Quantum Advantage in Learning from Experiments
https://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html
@Machine_learn
  
  https://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html
@Machine_learn
research.google
  
  Quantum Advantage in Learning from Experiments
  Posted by Jarrod McClean, Staff Research Scientist, Google Quantum AI, and Hsin-Yuan Huang, Graduate Student, Caltech In efforts to learn about the...
👍1
  End-to-end Generative Pre-training for Multimodal Video Captioning
https://ai.googleblog.com/2022/06/end-to-end-generative-pre-training-for.html
@Machine_learn
  
  https://ai.googleblog.com/2022/06/end-to-end-generative-pre-training-for.html
@Machine_learn
research.google
  
  End-to-end Generative Pre-training for Multimodal Video Captioning
  Posted by Paul Hongsuck Seo and Arsha Nagrani, Research Scientists, Google Research, Perception Team Multimodal video captioning systems utilize bo...
  The StatQuest Illustrated Guide To Machine Learning
by stamphet phd ,josh
The StatQuest Illustrated Guide To Machine Learning by stamphet phd ,josh
#book _req @Raminmousa
by stamphet phd ,josh
The StatQuest Illustrated Guide To Machine Learning by stamphet phd ,josh
#book _req @Raminmousa
❤4👍1
  LIMoE: Learning Multiple Modalities with One Sparse Mixture of Experts Model
https://ai.googleblog.com/2022/06/limoe-learning-multiple-modalities-with.html
@Machine_learn
  
  https://ai.googleblog.com/2022/06/limoe-learning-multiple-modalities-with.html
@Machine_learn
research.google
  
  LIMoE: Learning Multiple Modalities with One Sparse Mixture-of-Experts Model
  Posted by Basil Mustafa, Research Software Engineer and Carlos Riquelme, Research Scientist, Google Research, Brain team Sparse models stand out am...
❤1
  UniSRec
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Github: https://github.com/rucaibox/unisrec
Paper: https://arxiv.org/abs/2206.05941v1
Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
@Machine_learn
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Github: https://github.com/rucaibox/unisrec
Paper: https://arxiv.org/abs/2206.05941v1
Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
@Machine_learn
❤1👍1
  يكي از مهم ترين چالش هاي طبقه بندي سند اين كه مدل ها به صورت ٢ بعدي به متن و طبقه بندي ان مي پردازند، در واقع مكان قرار گيري جمله در سند كاملا ناديده گرفته ميشه. در اين مقاله ساختار تنسور سه بعدي را پيشنهاد دادم كه جملات در سند، كلمات در جملات و بردار تعبيه شده ي ان ها را در نظر ميگيره. 
به زودي فايل كامل مقاله رو در كانال ميزارم و تقريبا فرايند ثبتش تموم شده.
@Raminmousa
به زودي فايل كامل مقاله رو در كانال ميزارم و تقريبا فرايند ثبتش تموم شده.
@Raminmousa
❤1
  Identifying Disfluencies in Natural Speech
https://ai.googleblog.com/2022/06/identifying-disfluencies-in-natural.html
@Machine_learn
  
  https://ai.googleblog.com/2022/06/identifying-disfluencies-in-natural.html
@Machine_learn
research.google
  
  Identifying Disfluencies in Natural Speech
  Posted by Dan Walker and Dan Liebling, Software Engineers, Google Research People don’t write in the same way that they speak. Written language is ...
  DEEP LEARNING INTERVIEWS REAL-WORLD DEEP LEARNING INTERVIEW PROBLEMS & SOLUTIONS
#book #DL
book
@Machine_learn
link: https://arxiv.org/pdf/2201.00650.pdf
  #book #DL
book
@Machine_learn
link: https://arxiv.org/pdf/2201.00650.pdf
Enabling Creative Expression with Concept Activation Vectors
https://ai.googleblog.com/2022/07/enabling-creative-expression-with.html
@Machine_learn
  
  https://ai.googleblog.com/2022/07/enabling-creative-expression-with.html
@Machine_learn
research.google
  
  Enabling Creative Expression with Concept Activation Vectors
  Posted by Been Kim, Research Scientist, Google Research, Brain Team, and Alison Lentz, Senior Staff Strategist, Google Research, Mural Team Advance...
  👁🗨 CVNets: A library for training computer vision networks
Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.
Github: https://github.com/apple/ml-cvnets
Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models
Paper: https://arxiv.org/abs/2206.02680v1
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
  
  
  
  
  
Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.
Github: https://github.com/apple/ml-cvnets
Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models
Paper: https://arxiv.org/abs/2206.02680v1
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
❤4👍1
  Contextual Rephrasing in Google Assistant
https://ai.googleblog.com/2022/05/contextual-rephrasing-in-google.html
@Machine_learn
  
  https://ai.googleblog.com/2022/05/contextual-rephrasing-in-google.html
@Machine_learn
research.google
  
  Contextual Rephrasing in Google Assistant
  Posted by Aurelien Boffy, Senior Staff Software Engineer, and Roberto Pieraccini, Engineering Director, Google Assistant When people converse with ...
  murenei_natural-language-processing-with-python-and-nltk.pdf
    54.2 KB
  Natural Language Processing with Python & nltk Cheat Sheet #Cheat_Sheet @Machine_learn
❤5
  Rewriting Image Captions for Visual Question Answering Data Creation
https://ai.googleblog.com/2022/07/rewriting-image-captions-for-visual.html
@Machine_learn
  
  https://ai.googleblog.com/2022/07/rewriting-image-captions-for-visual.html
@Machine_learn
research.google
  
  Rewriting Image Captions for Visual Question Answering Data Creation
  Posted by Soravit Beer Changpinyo and Doron Kukliansky, Senior Software Engineers, Google Research Visual Question Answering (VQA) is a useful mac...
  This media is not supported in your browser
    VIEW IN TELEGRAM
  Temperature change (1880-2021) 🤯 
@Machine_learn
@Machine_learn
❤11👍1