Machine learning books and papers
23.4K subscribers
988 photos
55 videos
929 files
1.33K links
Download Telegram
YOLACT (You Only Look At CoefficienTs) - Real-time Instance Segmentation
Results are impressive, above 30 FPS on COCO test-dev
Forwarded from بینام
Machine Learning and Security (en).pdf
6.4 MB
Machine Learning and Security — C. Chio, D. Freeman (en) 2018
#book #ML
@Machine_learn
Forwarded from بینام
[Jojo_John_Moolayil]_Learn_Keras_for_Deep_Neural_N.pdf
2.7 MB
Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python

@Machine_learn
@Machine_learn


Learning to See Transparent Objects

ClearGrasp uses 3 neural networks: a network to estimate surface normals, one for occlusion boundaries (depth discontinuities), and one that masks transparent objects

Google research: https://ai.googleblog.com/2020/02/learning-to-see-transparent-objects.html

Code: https://github.com/Shreeyak/cleargrasp

Dataset: https://sites.google.com/view/transparent-objects

3D Shape Estimation of Transparent Objects for Manipulation: https://sites.google.com/view/cleargrasp
Deep learning of dynamical attractors from time series measurements

Embed complex time series using autoencoders and a loss function based on penalizing false-nearest-neighbors.

Code: https://github.com/williamgilpin/fnn

Paper: https://arxiv.org/abs/2002.05909
Machine learning books and papers pinned «@Machine_learn Graph ML Surveys A good way to start in this domain is to read what people already have done. Videos * Learning on Non-Euclidean Domains * Stanford Course CS 224w @Machine_learn GNN * Graph Neural Networks: A Review of Methods and Applications…»
@Machine_learn

Fresh picks from ArXiv
ICML 20 submissions, AISTATS 20, graphs in math, and Stephen Hawking 👨‍🔬

ICML 2020 submissions
Fast Detection of Maximum Common Subgraph via Deep Q-Learning (https://arxiv.org/abs/2002.03129)
Random Features Strengthen Graph Neural Networks (https://arxiv.org/abs/2002.03155)
Hierarchical Generation of Molecular Graphs using Structural Motifs (https://arxiv.org/pdf/2002.03230.pdf)
Graph Neural Distance Metric Learning with Graph-Bert (https://arxiv.org/abs/2002.03427)
Segmented Graph-Bert for Graph Instance Modeling (https://arxiv.org/abs/2002.03283)
Haar Graph Pooling (https://arxiv.org/abs/1909.11580)
Constant Time Graph Neural Networks (https://arxiv.org/abs/1901.07868)
@Machine_learn
AISTATS 20
Laplacian-Regularized Graph Bandits: Algorithms and Theoretical Analysis (https://arxiv.org/abs/1907.05632)
@Machine_learn
Math
Some arithmetical problems that are obtained by analyzing proofs and infinite graphs (https://arxiv.org/abs/2002.03075)
Extra pearls in graph theory (https://arxiv.org/abs/1812.06627)
Distance Metric Learning for Graph Structured Data (https://arxiv.org/abs/2002.00727)
@Machine_learn
Surveys
Generalized metric spaces. Relations with graphs, ordered sets and automata : A survey (https://arxiv.org/abs/2002.03019)
@Machine_learn
Stephen Hawking 👨‍🔬
Stephen William Hawking: A Biographical Memoir (https://arxiv.org/abs/2002.03185)