Forwarded from بینام
  
  OpenCV By Example.pdf
    14.6 MB
  Machine learning books and papers pinned «1: introduction two machine learning  2: Regression (linear and non-linear) 3: Tensorflow introduction 4: Tensorflow computaion graph  5: Tensorflow optimizer and loss function 6: Tensorflow linear and non linear regression 7: logistic regression  8: Tensorflow…»
  Open-Source Library for Real-Time Metric-Semantic Localization and Mapping
video: https://www.youtube.com/watch?v=-5XxXRABXJs&feature=youtu.be
code: https://github.com/MIT-SPARK/Kimera
article: https://arxiv.org/abs/1910.02490
  
  video: https://www.youtube.com/watch?v=-5XxXRABXJs&feature=youtu.be
code: https://github.com/MIT-SPARK/Kimera
article: https://arxiv.org/abs/1910.02490
YouTube
  
  Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping
  Code available: https://github.com/MIT-SPARK/Kimera
Paper: https://arxiv.org/abs/1910.02490
Kimera has also been used in:
- 3D Dynamic Scene Graphs:
Video: https://www.youtube.com/watch?v=SWbofjhyPzI&feature=youtu.be
Paper: https://arxiv.org/abs/2002.06289…
  Paper: https://arxiv.org/abs/1910.02490
Kimera has also been used in:
- 3D Dynamic Scene Graphs:
Video: https://www.youtube.com/watch?v=SWbofjhyPzI&feature=youtu.be
Paper: https://arxiv.org/abs/2002.06289…
CrypTen: A new research tool for secure machine learning with PyTorch
https://ai.facebook.com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch
code: https://github.com/facebookresearch/CrypTen
  
  https://ai.facebook.com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch
code: https://github.com/facebookresearch/CrypTen
Meta
  
  CrypTen: A new research tool for secure machine learning with PyTorch
  Facebook AI is open-sourcing CrypTen, a research-focused framework to explore encrypted machine learning techniques in the PyTorch environment.
  ICCV 2019 papers open access 
https://openaccess.thecvf.com/ICCV2019.py
Workshops:
https://openaccess.thecvf.com/ICCV2019_workshops/menu.py
  https://openaccess.thecvf.com/ICCV2019.py
Workshops:
https://openaccess.thecvf.com/ICCV2019_workshops/menu.py
Neural networks in NLP are vulnerable to adversarially crafted inputs.
We show that they can be trained to become certifiably robust against input perturbations such as typos and synonym substitution in text classification:
https://arxiv.org/abs/1909.01492
  
  We show that they can be trained to become certifiably robust against input perturbations such as typos and synonym substitution in text classification:
https://arxiv.org/abs/1909.01492
arXiv.org
  
  Achieving Verified Robustness to Symbol Substitutions via Interval...
  Neural networks are part of many contemporary NLP systems, yet their empirical successes come at the price of vulnerability to adversarial attacks. Previous work has used adversarial training and...
  Forwarded from بینام
  
  Deep Learning for Biometrics.pdf
    14.5 MB
  Forwarded from بینام
  
  Deep Feature Flow for Video Recognition.pdf
    3.7 MB
  Forwarded from Machine learning books and papers (Ramin Mousa)
  
discriminative : 
1:#Regression
2:#Logistic regression
3:#decision tree(Hunt)
4:#neural network(traditional network, deep network)
5:#Support Vector Machine(SVM)
Generative:
1:#Hidden Markov model
2:#Naive bayes
3:#K-nearest neighbor(KNN)
4:#Generative adversarial networks(GANs)
Deep learning:
1:CNN
R_CNN
Fast-RCNN
Mask-RCNN
2:RNN
3:LSTM
4:CapsuleNet
5:Siamese:
siamese cnn
siamese lstm
siamese bi-lstm
siamese CapsuleNet
6:time series data
SVR
DT(cart)
Random Forest linear
Bagging
Boosting
جهت درخواست و راهنمایی در رابطه با پیاده سازی مقالات و پایان نامه ها در رابطه با مباحث deep learning و machine learning با ایدی زیر در ارتباط باشید
@Raminmousa
  1:#Regression
2:#Logistic regression
3:#decision tree(Hunt)
4:#neural network(traditional network, deep network)
5:#Support Vector Machine(SVM)
Generative:
1:#Hidden Markov model
2:#Naive bayes
3:#K-nearest neighbor(KNN)
4:#Generative adversarial networks(GANs)
Deep learning:
1:CNN
R_CNN
Fast-RCNN
Mask-RCNN
2:RNN
3:LSTM
4:CapsuleNet
5:Siamese:
siamese cnn
siamese lstm
siamese bi-lstm
siamese CapsuleNet
6:time series data
SVR
DT(cart)
Random Forest linear
Bagging
Boosting
جهت درخواست و راهنمایی در رابطه با پیاده سازی مقالات و پایان نامه ها در رابطه با مباحث deep learning و machine learning با ایدی زیر در ارتباط باشید
@Raminmousa
Hamiltonian Neural Networks
https://eng.uber.com/research/hamiltonian-neural-networks/
paper: https://arxiv.org/pdf/1906.01563.pdf
code: https://github.com/greydanus/hamiltonian-nn
  https://eng.uber.com/research/hamiltonian-neural-networks/
paper: https://arxiv.org/pdf/1906.01563.pdf
code: https://github.com/greydanus/hamiltonian-nn
🔥OpenAI realesed the 1.5billion parameter GPT-2 model
Post: https://openai.com/blog/gpt-2-1-5b-release/
GPT-2 output detection model: https://github.com/openai/gpt-2-output-dataset/tree/master/detector
Research from partners on potential malicious uses: https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf
#NLU #GPT2 #OpenAI #NLP
  
  Post: https://openai.com/blog/gpt-2-1-5b-release/
GPT-2 output detection model: https://github.com/openai/gpt-2-output-dataset/tree/master/detector
Research from partners on potential malicious uses: https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf
#NLU #GPT2 #OpenAI #NLP
Openai
  
  GPT-2: 1.5B release
  As the final model release of GPT-2’s staged release, we’re releasing the largest version (1.5B parameters) of GPT-2 along with code and model weights to facilitate detection of outputs of GPT-2 models. While there have been larger language models released…
  HoloGAN (A new generative model) learns 3D representation from natural images
Article: https://arxiv.org/pdf/1904.01326.pdf
Code: https://github.com/thunguyenphuoc/HoloGAN
Dataset: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
  
  Article: https://arxiv.org/pdf/1904.01326.pdf
Code: https://github.com/thunguyenphuoc/HoloGAN
Dataset: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
GitHub
  
  GitHub - thunguyenphuoc/HoloGAN: HoloGAN
  HoloGAN. Contribute to thunguyenphuoc/HoloGAN development by creating an account on GitHub.
  Forwarded from بینام
  
  Applied Deep Learning (en).pdf
    12.6 MB
  Stacked Capsule Autoencoders
https://github.com/google-research/google-research/tree/master/stacked_capsule_autoencoders
paper : https://arxiv.org/abs/1906.06818
https://akosiorek.github.io/ml/2019/06/23/stacked_capsule_autoencoders.html
  
  https://github.com/google-research/google-research/tree/master/stacked_capsule_autoencoders
paper : https://arxiv.org/abs/1906.06818
https://akosiorek.github.io/ml/2019/06/23/stacked_capsule_autoencoders.html
GitHub
  
  google-research/stacked_capsule_autoencoders at master · google-research/google-research
  Google Research. Contribute to google-research/google-research development by creating an account on GitHub.
  This AI Learned To Animate Humanoids 🚶
https://www.youtube.com/watch?v=cTqVhcrilrE
code: https://github.com/sebastianstarke/AI4Animation
Check out Lambda here and sign up for their GPU Cloud : https://lambdalabs.com/papers
  
  https://www.youtube.com/watch?v=cTqVhcrilrE
code: https://github.com/sebastianstarke/AI4Animation
Check out Lambda here and sign up for their GPU Cloud : https://lambdalabs.com/papers
YouTube
  
  This AI Learned To Animate Humanoids!🚶
  ❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambdalabs.com/papers
📝 The paper "Neural State Machine for Character-Scene Interactions" is available here:
https://github.com/sebastianstarke/AI4Animation
🙏 We would like to thank our generous…
  📝 The paper "Neural State Machine for Character-Scene Interactions" is available here:
https://github.com/sebastianstarke/AI4Animation
🙏 We would like to thank our generous…
Forwarded from Machinelearning
  
  Linear Algebra Vectors.pdf
    7.5 MB
  Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares
https://web.stanford.edu/~boyd/vmls/
@ai_machinelearning_big_data
  https://web.stanford.edu/~boyd/vmls/
@ai_machinelearning_big_data
👌Finding label errors in datasets and learning with noisy labels.
https://github.com/cgnorthcutt/cleanlab/
  
  https://github.com/cgnorthcutt/cleanlab/
GitHub
  
  GitHub - cgnorthcutt/cleanlab: Official cleanlab repo is at https://github.com/cleanlab/cleanlab
  Official cleanlab repo is at https://github.com/cleanlab/cleanlab - cgnorthcutt/cleanlab
  Forwarded from بینام
  
  Deep-Learning-with-PyTorch.pdf
    16.8 MB
  GNNExplainer: Generating Explanations for Graph Neural Networks
https://arxiv.org/abs/1903.03894
Github : https://github.com/RexYing/gnn-model-explainer/
  
  https://arxiv.org/abs/1903.03894
Github : https://github.com/RexYing/gnn-model-explainer/
GitHub
  
  GitHub - RexYing/gnn-model-explainer: gnn explainer
  gnn explainer. Contribute to RexYing/gnn-model-explainer development by creating an account on GitHub.